www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "stochastische Prozesse" - Rekurrenz
Rekurrenz < stoch. Prozesse < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rekurrenz: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 11:40 Mo 27.04.2009
Autor: Grenzwert

Aufgabe
folgende Markovkette mit Übergangswahrscheinlichkeiten [mm] p_{k,k+1}=p_{k,k-1}=\bruch{1}{2} [/mm] für [mm] i\ge [/mm] 1 und [mm] p_{0,1}=1 [/mm]
Ist die Kette rekurrent?

Hi zusammen!
Ich habe gerade folgende Aufgabe zu lösen und bin etwas verunsichert..
Also die MC ist mir so weit klar. Intuitiv würde ich auch sagen sie geht gegen + [mm] \infty. [/mm] Nun ist als Hinweis zur AUfgabe angegeben, man soll die Antwort über den Hauptsatz zum stationären Mass begründen.
Dieser Satz ist mir aber leider ein Rätsel.
Ich denke ich braue zuerst die allgemeine Lösung des Rekurrenzgleichungssystems, oder? Da beginnen die Probleme für mich schon! Wir hatten dies schon mal, aber da gab es Randbedingungen, welche ich jetzt nicht rauslesen kann..
Ach herje, ich bin etwas verzweifelt und wäre froh um einen Tipp wie ich da auf einen grünen Zweig komme. Vielen lieben Dank!!

        
Bezug
Rekurrenz: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Mi 29.04.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Rekurrenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:37 Mi 29.04.2009
Autor: BBFan

Könntest du mal den Zustandsraum der Markovkette angeben. Wäre hilfreich.

Gruss
BBFan

Bezug
        
Bezug
Rekurrenz: Idee
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:22 Fr 08.05.2009
Autor: generation...x

Wenn ich mir die Aufgabenstellung scharf anschaue, dann würde ich sagen, du hast es mit einer Art Random Walk zu tun, einzig die Anfangsbedingung [mm] p_{0,1}=1 [/mm] ist etwas anders. Sie wirkt im Prinzip so, wie eine Spiegelung an der x-Achse, wann immer man in den negativen Bereich gehen würde.
Intuitiv hast du es also mit dem Betrag eines gewöhnlichen RW zu tun. Ein 1-dim RW ist rekurrent, dann sollte es der Betrag auch sein.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de