Rekursionsformel < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Bestimme die Rekursionsformel von [mm] I_{n}=\integral_{}^{}{\bruch{1}{(x^2+1)^{n}} dx} [/mm] |
Guten Tach.
An dieser Aufgabe beiße ich mir schon seit zwei Tagen die Zähne aus. Wir sollen partielle Integration üben.
Ziel des Ganzen ist es [mm] I_{n+1} [/mm] zu bestimmen und halt so, das [mm] I_{n} [/mm] drin vorkommt, rekursiv halt.
Ich habe schon versucht, den Bruch folgermaßen umzuschreiben:
[mm] I_{n+1}= \integral_{}^{}{\bruch{-2*n}{(x^2+1)^{n+1}}+\bruch{2*n+1}{(x^2+1)^{n+1}} dx}
[/mm]
So bekomm ich die Innere Ableitung da rein. Dann habe ich es weiter mit quadratischer Ergänzung versucht, bin bloß auf keinen grünen Zweig gekommen. Für einen Tipp wäre ich dankbar
Frohe Ostern
|
|
|
|
Integriere über die Identität
[mm]\frac{1}{\left( 1 + x^2 \right)^n} - \frac{1}{\left( 1 + x^2 \right)^{n+1}} = \frac{1}{2} \cdot \frac{2x}{\left( 1 + x^2 \right)^{n+1}} \cdot x[/mm]
und führe auf der rechten Seite partielle Integration durch, mit [mm]u'(x) = \frac{2x}{\left( 1 + x^2 \right)^{n+1}}[/mm] beginnend. Das gibt dir eine Beziehung zwischen [mm]I_n[/mm] und [mm]I_{n+1}[/mm].
|
|
|
|
|
Ich danke herzlich für die Antwort. Allerdings möchte ich noch mal nachfragen wie ich von [mm] \bruch{1}{(x^2+1)^{n+1}} [/mm] auf
$ [mm] \frac{1}{\left( 1 + x^2 \right)^n} [/mm] - [mm] \frac{1}{\left( 1 + x^2 \right)^{n+1}} [/mm] = [mm] \frac{1}{2} \cdot \frac{2x}{\left( 1 + x^2 \right)^{n+1}} \cdot [/mm] x $
komme.
Weiterhin frohe Ostern
|
|
|
|
|
Das ist nur Bruchrechnung. Erweitere den ersten Bruch mit [mm]1 + x^2[/mm] und addiere die Zähler.
|
|
|
|
|
Das ist schon klar nur wie ich von [mm] \bruch{1}{(x^2+1)^{n+1}} [/mm] zu [mm] \bruch{1}{(x^2+1)^{n}} [/mm] - [mm] \bruch{1}{(x^2+1)^{n+1}} [/mm] komme erschließt sich mir noch nicht. Für eine Erklärung wäre ich dankbar.
|
|
|
|
|
Irgendwie scheinst du mir auf dem Schlauch zu stehen.
[mm]\frac{1}{\left( 1 + x^2 \right)^n} - \frac{1}{\left( 1 + x^2 \right)^{n+1}} = \frac{1}{2} \cdot \frac{2x}{\left( 1 + x^2 \right)^{n+1}} \cdot x[/mm]
Das ist einfach eine allgemeingültige Termumformung, genauso wie etwa [mm]x+3x = 5x - x[/mm] oder [mm]\frac{x}{y} = \frac{2x^2}{2xy}[/mm]. Wie man sie herleitet, habe ich in meinem vorigen Beitrag schon gesagt. Da muß ich mich nicht wiederholen.
Und jetzt ziehe das unbestimmte Integral darüber:
[mm]\int~\left( \frac{1}{\left( 1 + x^2 \right)^n} - \frac{1}{\left( 1 + x^2 \right)^{n+1}} \right)~\mathrm{d}x = \frac{1}{2} \int~\frac{2x}{\left( 1 + x^2 \right)^{n+1}} \cdot x~\mathrm{d}x[/mm]
[mm]I_{n} - I_{n+1} = \frac{1}{2} \cdot \left( - \frac{1}{n} \cdot \frac{1}{\left( 1 + x^2 \right)^n} \cdot x + \frac{1}{n} \int~\frac{1}{\left( 1 + x^2 \right)^n}~\mathrm{d}x \right)[/mm]
Rechts wurde partiell integriert. Und das verbleibende Integral ist ja wieder [mm]I_n[/mm]. Jetzt kannst du die Formel nach [mm]I_{n+1}[/mm] auflösen.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 09:51 Mo 09.04.2007 | Autor: | Loddar |
Hallo Leopold!
Ich denke mal, dass blascowitz eher meint, wie man exakt auf diesen Ansatz kommt (und nicht die eigentliche Umformung an sich).
Gruß
Loddar
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 12:25 Mo 09.04.2007 | Autor: | blascowitz |
Richtig, das würde ich gerne mal verstehen
|
|
|
|
|
Erstens kannte ich das Problem von früher her. Das Verfahren steht auch in irgendwelchen Büchern. Insofern war da noch eine gewisse Erinnerung da. Wie es genau ging, wußte ich allerdings nicht mehr, und ich habe auch nicht mehr nachgeblättert.
Zweitens liegt es ja nahe, einen Zusammenhang zwischen [mm]I_n'[/mm] und [mm]I_{n+1}'[/mm] zu suchen, wenn man auf einen solchen zwischen [mm]I_n[/mm] und [mm]I_{n+1}[/mm] hinaus will. Ich habe daher zuerst addiert:
[mm]\frac{1}{\left( 1 + x^2 \right)^n} + \frac{1}{\left( 1 + x^2 \right)^{n+1}} = \frac{2 + x^2}{\left( 1 + x^2 \right)^{n+1}}[/mm]
und auch subtrahiert
[mm]\frac{1}{\left( 1 + x^2 \right)^n} - \frac{1}{\left( 1 + x^2 \right)^{n+1}} = \frac{x^2}{\left( 1 + x^2 \right)^{n+1}}[/mm]
Der zweite Ansatz schien mir erfolgversprechender. Denn durch die Zerlegung
[mm]\frac{x^2}{\left( 1 + x^2 \right)^{n+1}} = \frac{x}{\left( 1 + x^2 \right)^{n+1}} \cdot x[/mm]
mußte bei partieller Integration, da ja der Faktor [mm]x[/mm] dabei verschwindet, unter dem Integral wieder etwas wie [mm]\frac{1}{\left( 1 + x^2 \right)^n}[/mm] übrigbleiben. Mit [mm]\frac{1}{2} \cdot 2[/mm] habe ich mir dann alles zurechtgebogen - und es hat geklappt!
trial and error - Versuch und Irrtum
ein bewährtes Vorgehen in der Mathematik
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:15 Mo 09.04.2007 | Autor: | blascowitz |
Ich danke recht herzlich für die Hilfe. Mittlerweile habe ich es glaube ich auch verstanden. Wäre allerdings alleine nie drauf gekommen. Danke nochmal und weiter frohes Schaffen.
|
|
|
|