www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Rekursionssatz von Dedekind
Rekursionssatz von Dedekind < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rekursionssatz von Dedekind: Frage zu Beweis
Status: (Frage) beantwortet Status 
Datum: 17:34 Mo 14.03.2011
Autor: Physiker010

Aufgabe
Rekursionssatz von Dedekind:

Sei A eine nicht leere Menge, a [mm] \varepsilon [/mm] A ein Element und f: A->A eine Selbstabbildung. Zeigen sie folgende Aussage:
Unter obigen Vorrausetzungen gibt es genau eine Abbildung [mm] \gamma [/mm] : [mm] \IN->A [/mm] mit  [mm] \gamma(0)=a [/mm] und  [mm] \gamma(n')=f(\gamma(n)) [/mm] für allle [mm] n\varepsilon \IN [/mm] .
Wobei n' den Nachfolger bezeichnet.

Guten Tag.

Ich leren gerade für meine Analysis 1 Klausur und bin bei dieser Hausaufgaben hängen geblieben. Ich hab leider keine Lösung dafür und keine Ahnung was ich hier genau tun soll. Also wie soll ich das beweisen. Wie fängt man an und wo muss man hin.

Und was genau sagt mir der Satz überhaupt?

MfG
Physiker

        
Bezug
Rekursionssatz von Dedekind: Antwort
Status: (Antwort) fertig Status 
Datum: 09:02 Di 15.03.2011
Autor: fred97


> Rekursionssatz von Dedekind:
>  
> Sei A eine nicht leere Menge, a [mm]\varepsilon[/mm] A ein Element
> und f: A->A eine Selbstabbildung. Zeigen sie folgende
> Aussage:
>  Unter obigen Vorrausetzungen gibt es genau eine Abbildung
> [mm]\gamma[/mm] : [mm]\IN->A[/mm] mit  [mm]\gamma(0)=a[/mm] und  
> [mm]\gamma(n')=f(\gamma(n))[/mm] für allle [mm]n\varepsilon \IN[/mm] .
>  Wobei n' den Nachfolger bezeichnet.
>  Guten Tag.
>  
> Ich leren gerade für meine Analysis 1 Klausur und bin bei
> dieser Hausaufgaben hängen geblieben. Ich hab leider keine
> Lösung dafür und keine Ahnung was ich hier genau tun
> soll. Also wie soll ich das beweisen. Wie fängt man an und
> wo muss man hin.

Die Ex. einer solchen Abb. bekommst Du durch die induktive Def.:

           $ [mm] \gamma(0):=a$ [/mm]  und    $ [mm] \gamma(n'):=f(\gamma(n)) [/mm] $

Zur Eindeutigkeit: Sei [mm] $\gamma_1 [/mm] : [mm] \IN \to [/mm] A$  eine weitere Abb. mit:

              $ [mm] \gamma_1(0)=a$ [/mm]  und    $ [mm] \gamma_1(n')=f(\gamma_1(n)) [/mm] $  für  [mm] \n \in \IN [/mm]


Zeigen mußt Du jetzt:   [mm] $\gamma(n)=\gamma_1(n)$ [/mm]   für  n [mm] \in \IN. [/mm]

Aber das ist ein simpler Induktionsbeweis.

FRED


>  
> Und was genau sagt mir der Satz überhaupt?
>  
> MfG
>  Physiker


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de