www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Grenzwerte" - Rekursive Folgen und Beweise
Rekursive Folgen und Beweise < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rekursive Folgen und Beweise: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:53 So 16.10.2011
Autor: Fee

Aufgabe
Gegeben ist die rekursiv definierte Folge an+1=2/3an + 2

Wählen Sie verschiedene Startwerte für a1 und berechnen Sie anschließend so viele Folgeglieder wie Sie benötigen, um eine Vermutung für den Fixpunkt aFp zu bekommen

Zeigen Sie , dass gilt : an+1-aFp=2/3 (an -aFp)

Guten Abend !

Versteht ihr, was gemeint ist mit " verschieden Startwerte für a1" wählen ?
Gibt es da etwa mehrere Möglichkeiten?
Und was ist der Fixpunkt?

Und bei der zweiten Aufgabe, soll man dann einfach solange auflösen, bis auf beiden Seiten das gleiche Ergebnis steht ?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Rekursive Folgen und Beweise: Antwort
Status: (Antwort) fertig Status 
Datum: 20:25 So 16.10.2011
Autor: reverend

Hallo Fee,

> Gegeben ist die rekursiv definierte Folge an+1=2/3an + 2
>  
> Wählen Sie verschiedene Startwerte für a1 und berechnen
> Sie anschließend so viele Folgeglieder wie Sie benötigen,
> um eine Vermutung für den Fixpunkt aFp zu bekommen
>  
> Zeigen Sie , dass gilt : an+1-aFp=2/3 (an -aFp)

Verwende doch bitte den Formeleditor. So kann man ja nur raten, was da eigentlich stehen soll. In der ersten Gleichung könnte das links sein:
[mm]a*n+1, a_n+1[/mm] oder [mm]a_{n+1}[/mm]. Am wahrscheinlichsten ist das letzte davon.

Die rechte Seite ist noch schlimmer. Wenigstens Klammern solltest Du doch setzen können.
Heißt das [mm] \tfrac{2}{3}a_n+2, \bruch{2}{3a_n}+2 [/mm] oder [mm] \bruch{2}{3a_n+2} [/mm] oder sogar [mm] \bruch{2}{3(a_n+2)}? [/mm]

Bloß, weil es auf Deinem Aufgabenzettel steht, wissen wir ja noch nicht, was es heißen soll.

>  Guten Abend !
>  
> Versteht ihr, was gemeint ist mit " verschieden Startwerte
> für a1" wählen ?
>  Gibt es da etwa mehrere Möglichkeiten?

Ja, unendlich viele. Setze z.B. [mm] a_1=1 [/mm] und schau, wie sich dann [mm] a_2, a_3 [/mm] etc. weiter entwickeln. Versuche dann [mm] a_1=-5 [/mm] oder [mm] a_1=\tfrac{1}{1984} [/mm] oder [mm] a_1=2.783.944 [/mm]

>  Und was ist der Fixpunkt?

Das soll wohl der Grenzwert der Folge sein.

> Und bei der zweiten Aufgabe, soll man dann einfach solange
> auflösen, bis auf beiden Seiten das gleiche Ergebnis steht
> ?

Nein, Unsinn. Da steht eine Beziehung zwischen [mm] a_1, a_n [/mm] und [mm] a_{Fp}, [/mm] die zu zeigen ist. Und zwar für alle [mm] a_n. [/mm]

Also, verrate erstmal, was da wirklich steht.

Der Formeleditor öffnet sich, wenn Du über dem Eingabefenster auf das rote [mm] \red{\Sigma} [/mm] klickst und ist so ziemlich selbsterklärend. Damit kannst Du nicht nur "schöne", sondern vor allem eindeutige Formeln schreiben.

Grüße
reverend


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de