www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Relationen" - Relation überprüfen
Relation überprüfen < Relationen < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Relationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Relation überprüfen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:50 Di 22.10.2013
Autor: MrItalian

Aufgabe
Prüfen Sie, welche der nachfolgenden Relationen R über den angegebenen Mengen A reflexiv, symmetrisch, und / oder transitiv sind.

a) [mm] A:=\mathcal{P}(\IN), [/mm] R:={(x,y) | x [mm] \cap [/mm] y = [mm] \emptyset [/mm] }

Hallo zusammen,

ich habe folgende Frage bei dieser Aufgabe. Um hier prüfen zu können ob diese Relation reflexiv, symmetrisch, und / oder transitiv ist, muss ich erst mal eine klare Vorstellung haben wie diese Relation aussieht.
Wenn ich jetzt beispielsweise 2 Elemente von A herausnehme wie {1,2,3} und {4,5,6} und diese dann in der Bedingung von R überprüfe dann ist diese erfüllt, denn {1,2,3} [mm] \cap [/mm] {4,5,6} = [mm] \emptyset. [/mm] So weit alles klar.
Aber was kommt jetzt in meinen R rein? Etwa R:={({1,2,3},{4,5,6})}? Und wenn ja wie kann ich dann auf Reflexivität, Symmetrie und Transitivität prüfen?

Vielen Dank im Voraus und viele Grüße

        
Bezug
Relation überprüfen: Antwort
Status: (Antwort) fertig Status 
Datum: 02:08 Mi 23.10.2013
Autor: Gonozal_IX

Hiho,

deine Überlegungen sind soweit richtig, es gilt allerdings nicht

R:={({1,2,3},{4,5,6})}

weil ja noch viel mehr Elemente drin liegen, um genau zu sein sogar unendlich viele.
Es gilt aber [mm] $\left\{(\{1,2,3\},\{4,5,6\})\right\} \subset [/mm] R$

> wie kann ich dann auf Reflexivität, Symmetrie und Transitivität prüfen?

Das kannst du doch ohne genaue Informationen des Inhalts von R.

Beispielsweise ist R sicher nicht reflexiv, da für [mm] $x\not=\emptyset$ [/mm] doch [mm] $x\cap [/mm] x = x [mm] \not=\emptyset$ [/mm] gilt.

Die anderen beiden machst du mal selbst :-)

Gruß,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Relationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de