www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Diskrete Mathematik" - Relationen
Relationen < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Relationen: Erklärung
Status: (Frage) beantwortet Status 
Datum: 14:35 Do 20.03.2014
Autor: rsprsp

Aufgabe
Wir betrachten die Menge X
aller Wörter der Länge k über dem Alphabet {0;1} und definieren die Relation R als xRy genau dann, wenn ein i [mm] \in [/mm] {1; ... ; k} existiert, so dass [mm] x_{i}> y_{i} [/mm] und [mm] x_{j}=y_{j} [/mm] für j [mm] \in [/mm] {1; ... ; [mm] k}\{i} [/mm] .

a)Warum de niert diese Relation keine partielle Ordnung auf X?

Könnte mir jemand die Aufgabe erklären z.B. mit Beispielen aus den Mengen der Relationen ?
Ich versteh diese Aufgabe gar nicht.

        
Bezug
Relationen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:44 Do 20.03.2014
Autor: fred97


> Wir betrachten die Menge X
>  aller Wörter der Länge k über dem Alphabet {0;1} und
> definieren die Relation R als xRy genau dann, wenn ein i
> [mm]\in[/mm] {1; ... ; k} existiert, so dass [mm]x_{i}> y_{i}[/mm] und
> [mm]x_{j}=y_{j}[/mm] für j [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

{1; ... ; [mm]k}\{i}[/mm] .

>  
> a)Warum de niert diese Relation keine partielle Ordnung auf
> X?
>  Könnte mir jemand die Aufgabe erklären z.B. mit
> Beispielen aus den Mengen der Relationen ?
> Ich versteh diese Aufgabe gar nicht.


Sind [mm] x=x_1...x_k [/mm] und [mm] y=y_1...y_k [/mm] Elemente von X, so ist die Relation R def. durch

   xRy  [mm] \gdw [/mm] es ex. ein i [mm] \in \{1,...,k\} [/mm] mit

   [mm] x_i>y_i [/mm]   und  [mm] x_j=y_j [/mm] für j [mm] \in \{1,...,k\} \setminus\{i\}. [/mm]

Fragen: 1. ist R reflexiv ?

2. Welche Eigenschaften hat denn eine partielle Ordnung ?

Mit den Antworten auf diese beiden Fragen sollte alles klar sein.

FRED

Bezug
                
Bezug
Relationen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:04 Do 20.03.2014
Autor: rsprsp

Reflexiv heißt aRa
Partielle Ordnung ist reflexiv, antisymmetrisch, transitiv

Könntest du es mir für reflexiv zeigen ? Ich versuchs mit den anderen beiden.

Bezug
                        
Bezug
Relationen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:12 Do 20.03.2014
Autor: fred97


> Reflexiv heißt aRa
>  Partielle Ordnung ist reflexiv, antisymmetrisch,
> transitiv
>  
> Könntest du es mir für reflexiv zeigen ? Ich versuchs mit
> den anderen beiden.

Du sollst doch zeigen, dass obiges R keine part. Ordung liefert !!!

Ist denn R reflexiv ????


FRED


Bezug
                
Bezug
Relationen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:24 Do 20.03.2014
Autor: rsprsp

Nein, denn  [mm] x_{i}>y_{i} [/mm] und eine Zahl die größer als eine andere ist kann nicht gleich sein.

Bezug
                        
Bezug
Relationen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Sa 22.03.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de