www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Relationen
Relationen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Relationen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:15 Mi 03.05.2017
Autor: Fry

Sei R eine Relation auf M, wobei
M={1,2,3} und R={(1,2),(2,3),(1,3)}




Hallo zusammen :)

Mir geht es jetzt um den Beweis der Transitivät bzw. wie man diesen "schön" aufschreibt.

Wie würdet ihr das schreiben?
Z.B. so?


R ist transitiv, denn
"[mm](1,2),(2,3)\in R\Rightarrow (1,3)[/mm]" ist wahr.


oder vielleicht:
R ist transitiv, denn [mm](1,2),(2,3),(1,3)\in R[/mm]


LG
Fry

        
Bezug
Relationen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:55 Mi 03.05.2017
Autor: Al-Chwarizmi


> Sei R eine Relation auf M, wobei
>  M={1,2,3} und R={(1,2),(2,3),(1,3)}
>  
> Hallo zusammen :)
>  
> Mir geht es jetzt um den Beweis der Transitivät bzw. wie
> man diesen "schön" aufschreibt.
>  
> Wie würdet ihr das schreiben?

> R ist transitiv, denn
>  "[mm](1,2),(2,3)\in R\Rightarrow (1,3)[/mm]" ist wahr.

Das ist kein für die Situation ausreichender "Beweis".

> oder vielleicht:
>  R ist transitiv, denn [mm](1,2),(2,3),(1,3)\in R[/mm]

Dies auch nicht ...

______________________________________________________


Meine Überlegungen, wohl deutlich ausführlicher dargestellt,
als du es erwartet hast:


Die Prämisse "falls (x,y) € R  und  (y,z) € R , ...."  erfordert
stets ein Element y der Grundmenge M , welches sowohl an
erster als auch an zweiter Stelle eines Paares  [mm] (a_1 [/mm] | [mm] a_2) [/mm]  
aus der Menge R auftreten kann.
Nun kommt von den 3 Elementen der Grundmenge M

---    die 1  nur als Erstelement
---    die 3  nur als Zweitelement
---    und nur die 2 sowohl als Erst- als auch als Zweitelement
        eines Paares aus R  vor

Die Prämisse ist in der vorliegenden Situation nur für die Paare
(x,y) = (1,2)  und   (y,z) = (2,3)      erfüllt.
Da nun aber das Paar  (x,z) = (1,3)  ebenfalls zu R gehört,
ist die Transitivitätseigenschaft in diesem einzigen überhaupt
möglichen Testbeispiel, und damit allgemein erfüllt.

Nun kannst du dir ja überlegen, wie du dies deutlich
kürzer fassen könntest ...

(Eine Möglichkeit wäre natürlich auch, eine vollständige
Tabelle aller Möglichkeiten anzugeben !)

LG   ,    Al-Chwarizmi

Bezug
        
Bezug
Relationen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:22 Mi 03.05.2017
Autor: tobit09

Hallo Fry!


Hier ein weiterer Formulierungsvorschlag (den man bei Bedarf noch um weitere Detailbegründungen ergänzen könnte):


Seien [mm] $x,y,z\in [/mm] M$ mit [mm] $(x,y)\in [/mm] R$ und [mm] $(y,z)\in [/mm] R$.
Zu zeigen ist [mm] $(x,z)\in [/mm] R$.

Wegen [mm] $(x,y)\in [/mm] R$ ist $y=2$ oder $y=3$.
Wegen [mm] $(y,z)\in [/mm] R$ ist  $y=1$ oder $y=2$.

Zusammengenommen muss also $y=2$ gelten.

Aus [mm] $(x,2)=(x,y)\in [/mm] R$ folgt $x=1$.
Aus [mm] $(2,z)=(y,z)\in [/mm] R$ folgt $z=3$.

Zusammen erhalten wir wie gewünscht [mm] $(x,z)=(1,3)\in [/mm] M$.


Viele Grüße
Tobias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de