www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Residuensatz
Residuensatz < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Residuensatz: Reelles Integral berechnen
Status: (Frage) beantwortet Status 
Datum: 13:12 Fr 10.02.2006
Autor: kunzm

Eingabefehler: "\left" und "\right" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Aufgabe
Berechnen sie das Folgende Integral mit Hilfe der Funktionentheorie:

$\int\limits_{-\infty}^{\infty}\frac{1}{1+x^4}$

Hallo mal wieder,

Ich habe mir folgendes überlegt:

Sei $f(z)=\frac{1}{1+z^4}$.

Dann sind die Nullstellen des Nenners bei:

$z^4=-1$ $\Rightarrow$ $z^4=\exp(i\pi(1+2k))$ $\Rightarrow$ $z=\exp(\frac{i\pi(1+2k)}{4})$

Also bei:

$z_1=\exp(\frac{\pi i}{4})$, $z_2=\exp(\frac{3\pi i}{4})$, $z_3=\exp(\frac{5\pi i}{4})$, $z_4=\exp(\frac{7\pi i}{4})$


Dies sind alles einfache Pole.

\textit{Satz aus unserem Skript:}

\textit{Ist c einfacher Pol, so gilt:}

$res_c f(z)=\lim\limits_{z->c}(z-c)f(z)$

also:

$res_c f(z)=\lim\limits_{z->c}(z-c)f(z)=\lim\limits_{z->c}\frac{z-c}{1+z^4} ={l'Hopital}=\lim\limits_{z->c}\frac{1}{4z^3}=\frac{1}{4c^3}$

(hier bin ich nicht ganz sicher..)

Die Summe der 4 Residuen (nullstellen für c eingesetzt) multipliziert mit $2\pi i$ sollte mir doch dann das Integral geben, also

$\int\frac{1}{1+z^4}=2 \pi i \sum Res(f(z),z_k)$

$\sum Res(f(z),z_k)=\frac{1}{4}\left( \frac{1}{(\exp{\frac{\pi i}{4}})^3}+ \frac{1}{(\exp{\frac{3\pi i}{4}})^3}+ \frac{1}{(\exp{\frac{5\pi i}{4}})^3} + \frac{1}{(\exp{\frac{7\pi i}{4}})^3}\right)$

$=\frac{1}{4}\left ( \frac{1}{(\exp{\frac{3\pi i}{4}})}+ \frac{1}{(\exp{\frac{9\pi i}{4}})}+ \frac{1}{(\exp{\frac{15\pi i}{4}})} + \frac{1}{(\exp{\frac{21\pi i}{4}})}\right)$

$=\frac{1}{4}\left( \frac{1}{(\exp{3\pi i)})}+ \frac{1}{(\exp{9\pi i)}})}+ \frac{1}{(\exp{15\pi i)})} + \frac{1}{(\exp{21\pi i)})}\right)=-1$

Also ist:

$\int\frac{1}{1+z^4}=2 \pi i \sum Res(f(z),z_k)=-2\pi i$

Und da sollte eigentlich stehen: $\frac{1}{\sqrt{2}} \pi$....

Was hab ich da mal wieder falsch gemacht?

Danke für Eure Hilfe, Martin

        
Bezug
Residuensatz: Antwort
Status: (Antwort) fertig Status 
Datum: 21:00 Fr 10.02.2006
Autor: schurikxxx

Hallo Martin



>  
> Sei [mm]f(z)=\frac{1}{1+z^4}[/mm].
>  
> Dann sind die Nullstellen des Nenners bei:
>  
> [mm]z^4=-1[/mm] [mm]\Rightarrow[/mm] [mm]z^4=\exp(i\pi(1+2k))[/mm] [mm]\Rightarrow[/mm]
> [mm]z=\exp(\frac{i\pi(1+2k)}{4})[/mm]
>  
> Also bei:
>  
> [mm]z_1=\exp(\frac{\pi i}{4})[/mm], [mm]z_2=\exp(\frac{3\pi i}{4})[/mm],
> [mm]z_3=\exp(\frac{5\pi i}{4})[/mm], [mm]z_4=\exp(\frac{7\pi i}{4})[/mm]
>  
>
> Dies sind alles einfache Pole.
>  
> [mm]\textit{Satz aus unserem Skript:}[/mm]
>  
> [mm]\textit{Ist c einfacher Pol, so gilt:}[/mm]
>  
> [mm]res_c f(z)=\lim\limits_{z->c}(z-c)f(z)[/mm]
>  
> also:
>  
> [mm]res_c f(z)=\lim\limits_{z->c}(z-c)f(z)=\lim\limits_{z->c}\frac{z-c}{1+z^4} ={l'Hopital}=\lim\limits_{z->c}\frac{1}{4z^3}=\frac{1}{4c^3}[/mm]
>  
> (hier bin ich nicht ganz sicher..)

bis dahin ist alles richtig.


> Die Summe der 4 Residuen (nullstellen für c eingesetzt)
> multipliziert mit [mm]2\pi i[/mm] sollte mir doch dann das Integral
> geben, also
>  
> [mm]\int\frac{1}{1+z^4}=2 \pi i \sum Res(f(z),z_k)[/mm]
>  
> [mm]\sum Res(f(z),z_k)=\frac{1}{4}\left( \frac{1}{(\exp{\frac{\pi i}{4}})^3}+ \frac{1}{(\exp{\frac{3\pi i}{4}})^3}+ \frac{1}{(\exp{\frac{5\pi i}{4}})^3} + \frac{1}{(\exp{\frac{7\pi i}{4}})^3}\right)[/mm]

Hier liegt glaube ich dein Fehler. Duhast 4 komplexe nullstellen, 2 oberhalb der Reellen Achse und 2 unterhalb.
Um die Residuen zu berechnen brauchst du nur die Residuen oberhalb zu betrachten.
Für die anderen Residuen verschwindet das integral gegen 0.

Grüsse
Schurikxxx

Bezug
                
Bezug
Residuensatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:37 Sa 11.02.2006
Autor: kunzm

Danke, aber wenn ich die beiden nullstellen mit  $Im(.)<0$  weglasse, also schreibe:

$ [mm] \sum Res(f(z),z_k)=\frac{1}{4}\left( \frac{1}{(\exp{\frac{\pi i}{4}})^3}+ \frac{1}{(\exp{\frac{3\pi i}{4}})^3}\right) =-\frac{1}{2}$ [/mm]

bekomme ich für das Integral immer noch [mm] $-\pi [/mm] i$ zurück und nicht wie gewünscht [mm] $\frac{1}{\sqrt{2}} \pi$. [/mm] Irgendwo muss noch ein Fehler sein (vielleicht stimmt auch die Musterlösung nicht, wäre nicht das erste mal) Brauche aber irgendwie eine stichhaltige Begründung...

Danke, Martin.

Bezug
                        
Bezug
Residuensatz: Antwort
Status: (Antwort) fertig Status 
Datum: 17:18 Sa 11.02.2006
Autor: schurikxxx

Hallo Martin,

ich glaube du hast dich verrechnet. Ich bekomme raus:
[mm]2 \pi\sum Res(f(z),z_k)=2 \pi\frac{1}{4}\left( \frac{1}{(\exp{\frac{\pi i}{4}})^3}+ \frac{1}{(\exp{\frac{3\pi i}{4}})^3}\right) =2 \pi\left( (\frac{1}{2} \wurzel{2}+i\frac{1}{2} \wurzel{2})+(\frac{1}{2} \wurzel{2}-i\frac{1}{2} \wurzel{2})\right)=\frac{1}{2} \wurzel{2}\pi[/mm]

Grüsse
Schurikxxx

Bezug
                                
Bezug
Residuensatz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:35 Sa 11.02.2006
Autor: kunzm

upps, danke!

L.G.M.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de