www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Residuum-4.Ordnung im Nenner
Residuum-4.Ordnung im Nenner < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Residuum-4.Ordnung im Nenner: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:38 Do 23.04.2015
Autor: waruna

Aufgabe
Hallo, ich muss ein Integral

[mm] \int\limits_{-\infty}^{\infty} dx\frac{1}{|f(x)|^2} [/mm]
mit
[mm] f(x)=k-mx^2+i\gamma [/mm] x
berechnen

Ich wollte Residuumsatz benutzen, folglich

[mm] \int\limits_{-\infty}^{\infty} dx\frac{1}{|f(x)|^2}=2\pi [/mm] i [mm] \sum\limits_k [/mm] Res [mm] \frac{1}{|f(a_k)|^2} [/mm]

Ich will also die Nullstelle von [mm] |f(x)|^2 [/mm] bestimmen.

[mm] |f(x)|^2=k^2+m^2x^4+x^2(\gamma^2 [/mm] -2mk)

Die 4 Nullstellen, die ich bekomme sehr hässlich sind

[mm] a=+/-\sqrt{b_{1/2}} [/mm]

mit [mm] b_1/2 [/mm] Lösungen von [mm] k^2+m^2y^2+y(\gamma^2 [/mm] -2mk)

Die Antwort die rauskommen soll ist:
[mm] \sum\limits_k [/mm] Res [mm] \frac{1}{|f(a_k)|^2}=-\frac{i}{2\gamma k} [/mm]

Wie soll ich weiter kommen?
Mache ich etwas schlecht?


        
Bezug
Residuum-4.Ordnung im Nenner: Antwort
Status: (Antwort) fertig Status 
Datum: 17:02 Do 23.04.2015
Autor: fred97

Es ist [mm] |f(x)|^2=0 \gdw [/mm] f(x)=0

f hat also (höchstens) 2 Nullstellen.

FRED

Bezug
                
Bezug
Residuum-4.Ordnung im Nenner: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:08 Do 23.04.2015
Autor: waruna

Ok, Ich habe also immer noch 4 Nullpunkten von [mm] |f(x)|^2, [/mm] die sehen aber schöner aus:
[mm] c_1,c_2,-c_1,-c_2. [/mm]

[mm] c_{1/2}=\frac{i\gamma+/-\sqrt{-\gamma^2+4mk}}{2m} [/mm]

Wenn ich annehme, dass alle Nullstellen 1. Ordnung sind [mm] (c_1\neq 0,c_2\neq [/mm] 0, [mm] c_1\neq c_2), [/mm]  dann benutze ich, dass es gilt

[mm] Res(f)(a)=\lim\limits_{x\rightarrow a}(x-a)\frac{1}{|f(x)|^2} [/mm]

Dann bekomme ich vier Terme (ich schreibe zwei erste):
[mm] 2\pi [/mm] i [mm] \sum [/mm] Res =  [mm] 2\pi [/mm] i  [mm] (\frac{1}{(c_1-c_2)(c_1+c_1)(c_1+c_2)}+\frac{1}{(c_2-c_1)(c_2+c_1)(c_2+c_2)}+...) [/mm]
Summe ergibt aber Null...
Was habe ich schlecht gemacht?
Ist die Annahme, dass das Nullstellen 1. Ordnung sind schuld? Aber meine Konstanten beliebig (reel, ungleich null) sein können, das Ergebniss soll also stimmen



Bezug
                        
Bezug
Residuum-4.Ordnung im Nenner: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 08:19 Fr 24.04.2015
Autor: waruna

Ok, ich habe gemerkt, dass wenn ich annehme [mm] 4km>\gamma^2, [/mm] dann zwei Lösungen nicht in Integrationsbereich liegen (haben negative Imaginäre Teil).

Wir müssen also über zwei Residuen summieren.
Ich komme an folgende Werten für Residuen (mit oben gegebenen Formel):

[mm] Res(f)(c_1)=\frac{m^3}{-2i\gamma^3+4ikm\gamma-2\gamma^2\sqrt{4km-\gamma^2}} [/mm]

[mm] Res(f)(c_2)=\frac{m^2}{4ik\gamma} [/mm]
also nicht das was ich bekommen soll...

Bezug
                                
Bezug
Residuum-4.Ordnung im Nenner: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:21 Di 28.04.2015
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
                        
Bezug
Residuum-4.Ordnung im Nenner: Antwort
Status: (Antwort) fertig Status 
Datum: 08:37 Fr 24.04.2015
Autor: fred97


> Ok, Ich habe also immer noch 4 Nullpunkten von [mm]|f(x)|^2,[/mm]
> die sehen aber schöner aus:
>  [mm]c_1,c_2,-c_1,-c_2.[/mm]

Du bist beratungsresistent !

Es ist f(x)=0  [mm] \gdw |f(x)|^2=0. [/mm]


>  
> [mm]c_{1/2}=\frac{i\gamma+/-\sqrt{-\gamma^2+4mk}}{2m}[/mm]

Ja, das sind die Nullstellen von f.

Mit [mm] c_j [/mm] ist [mm] -c_j [/mm] im allgemeinen keine(!) Nullstelle von f.

Es gilt :  [mm] f(-c_j)=0 \gdw c_j=0. [/mm]

FRED

>  
> Wenn ich annehme, dass alle Nullstellen 1. Ordnung sind
> [mm](c_1\neq 0,c_2\neq[/mm] 0, [mm]c_1\neq c_2),[/mm]  dann benutze ich,
> dass es gilt
>  
> [mm]Res(f)(a)=\lim\limits_{x\rightarrow a}(x-a)\frac{1}{|f(x)|^2}[/mm]
>
> Dann bekomme ich vier Terme (ich schreibe zwei erste):
>  [mm]2\pi[/mm] i [mm]\sum[/mm] Res =  [mm]2\pi[/mm] i  
> [mm](\frac{1}{(c_1-c_2)(c_1+c_1)(c_1+c_2)}+\frac{1}{(c_2-c_1)(c_2+c_1)(c_2+c_2)}+...)[/mm]
>  Summe ergibt aber Null...
> Was habe ich schlecht gemacht?
>  Ist die Annahme, dass das Nullstellen 1. Ordnung sind
> schuld? Aber meine Konstanten beliebig (reel, ungleich
> null) sein können, das Ergebniss soll also stimmen
>  
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de