www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - Residuum berechnen
Residuum berechnen < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Residuum berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:33 Fr 26.06.2015
Autor: JoOtt

Aufgabe
Finden Sie die Singularitäten der folgenden holomorphen Funktionen und bestimmen Sie, von welcher Art sie sind. Berechnen Sie bei Polen auch das Residuum.

[mm] f(z)=\bruch{z}{e^z-1} [/mm]

Hallo,

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

ich höre gerade Analysis IV und bin zum ersten mal mit Singularitäten und Residuen konfrontiert - und kräftig überfordert.

Muss ich, um Singularitäten und deren Ordnung zu ermitteln immer erst die Laurantreihe zu der Funktion aufstellen? Wenn ja, dann brauch ich dafür auch noch Hilfe.

Anschaulich hätte ich bei dieser "einfachen" Funktion gesagt, dass sie einen Pol erster Ordnung bei [mm] z_{0}=0 [/mm] hat. Stimmt das schonmal? Um die Ordnung des Pols zu berechnen, müsste ich ja aber wieder das [mm] c_{n} [/mm] von der Laurantreihe wissen...

Angenommen meine Vermutung stimmt, wie kriege ich dann das Residuum heraus? Es gilt doch
[mm] Res_{f}=\limes_{z\rightarrow z_{0}}(z-z_{0})f(z)=\limes_{z\rightarrow 0}(z-z_{0})\bruch{z}{e^z-1} [/mm]
...aber dann folgt doch "anschaulich" : [mm] 0*\bruch{0}{e^0-1}, [/mm] wobei [mm] (e^0-1)\rightarrow [/mm] 0 und somit [mm] 0*\bruch{0}{0}. [/mm] Wenn ich mir den Bruch mit L'hopital anschaue bekomme ich [mm] 1/e^z [/mm] und somit für [mm] z\rightarrow [/mm] 0, dass [mm] Res_{f}=0 [/mm] ist.

Stimmt das so?

Sorry, wie ihr merkt bin ich noch sehr verwirrt in dem Thema

Danke für jegliche Hilfe!

        
Bezug
Residuum berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:48 Fr 26.06.2015
Autor: fred97


> Finden Sie die Singularitäten der folgenden holomorphen
> Funktionen und bestimmen Sie, von welcher Art sie sind.
> Berechnen Sie bei Polen auch das Residuum.
>  
> [mm]f(z)=\bruch{z}{e^z-1}[/mm]
>  Hallo,
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> ich höre gerade Analysis IV und bin zum ersten mal mit
> Singularitäten und Residuen konfrontiert - und kräftig
> überfordert.
>  
> Muss ich, um Singularitäten und deren Ordnung

Nur bei Polen hat man auch eine Ordnung.


> zu ermitteln
> immer erst die Laurantreihe zu der Funktion aufstellen?

Nein, das muss man nicht.


> Wenn ja, dann brauch ich dafür auch noch Hilfe.
>
> Anschaulich hätte ich bei dieser "einfachen" Funktion
> gesagt, dass sie einen Pol erster Ordnung bei [mm]z_{0}=0[/mm] hat.
> Stimmt das schonmal?


Nein. Setzen wir [mm] g(z):=e^z. [/mm]

Dann: [mm] \bruch{e^z-1}{z}= \bruch{g(z)-g(0)}{z-0} \to [/mm] g'(0)=1  für z [mm] \to [/mm] 0.

Es folgt:  [mm] \limes_{z \rightarrow 0}f(z)=1. [/mm]

Damit hat f in [mm] z_0=0 [/mm] eine hebbare Singularität.


f hat noch weitere isolierte Singularitäten. Welche ?


FRED



> Um die Ordnung des Pols zu berechnen,
> müsste ich ja aber wieder das [mm]c_{n}[/mm] von der Laurantreihe
> wissen...
>  
> Angenommen meine Vermutung stimmt, wie kriege ich dann das
> Residuum heraus? Es gilt doch
>  [mm]Res_{f}=\limes_{z\rightarrow z_{0}}(z-z_{0})f(z)=\limes_{z\rightarrow 0}(z-z_{0})\bruch{z}{e^z-1}[/mm]
>  
> ...aber dann folgt doch "anschaulich" : [mm]0*\bruch{0}{e^0-1},[/mm]
> wobei [mm](e^0-1)\rightarrow[/mm] 0 und somit [mm]0*\bruch{0}{0}.[/mm] Wenn
> ich mir den Bruch mit L'hopital anschaue bekomme ich [mm]1/e^z[/mm]
> und somit für [mm]z\rightarrow[/mm] 0, dass [mm]Res_{f}=0[/mm] ist.
>
> Stimmt das so?
>  
> Sorry, wie ihr merkt bin ich noch sehr verwirrt in dem
> Thema
>  
> Danke für jegliche Hilfe!


Bezug
                
Bezug
Residuum berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:47 Fr 26.06.2015
Autor: JoOtt

Hallo Fred,  danke schonmal für deine Antwort.

Klar, die Funktion hat natürlich auch noch alle Vielfachen von [mm] 2\pi [/mm] i als Singularitäten, wie konnte ich das nur übersehen.

Aus einer Beispielaufgabe folgere ich, dass es sich hierbei aber um einen Pol 1. Ordnung an [mm] 2in\pi [/mm] für [mm] n\in\IZ\{0} [/mm] handelt. (Die Funktion dort lautet [mm] \bruch{z}{sin(z)} [/mm] und die Aussage ist, dass es eine hebbare Singularität in z=0 und eben Pol 1. Ordnung in [mm] n\pi [/mm] handelt. Allerdings steht da leider nur die Lösung und kein Lösungsweg. Vielleicht könnte man mir da ein bisschen auf die Sprünge helfen?

Vielen Dank nochmal

Bezug
                        
Bezug
Residuum berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:19 Fr 26.06.2015
Autor: Chris84


> Hallo Fred,  danke schonmal für deine Antwort.
>  
> Klar, die Funktion hat natürlich auch noch alle Vielfachen
> von [mm]2\pi[/mm] i als Singularitäten, wie konnte ich das nur
> übersehen.
>
> Aus einer Beispielaufgabe folgere ich, dass es sich hierbei
> aber um einen Pol 1. Ordnung an [mm]2in\pi[/mm] für [mm]n\in\IZ\{0}[/mm]
> handelt. (Die Funktion dort lautet [mm]\bruch{z}{sin(z)}[/mm] und
> die Aussage ist, dass es eine hebbare Singularität in z=0
> und eben Pol 1. Ordnung in [mm]n\pi[/mm] handelt. Allerdings steht
> da leider nur die Lösung und kein Lösungsweg. Vielleicht
> könnte man mir da ein bisschen auf die Sprünge helfen?

Ich weiss natuerlich nicht, wie ihr das in der Vorlesung gelernt habt, aber wenn $f(z)$ einen Pol $n$-ter Ordnung in [mm] $z_0$ [/mm] hat, dann existiert

[mm] $\lim\limits_{z\rightarrow z_0} (z-z_0)^n [/mm] f(z)$

>  
> Vielen Dank nochmal


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de