www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Restklasse/ Gruppe
Restklasse/ Gruppe < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Restklasse/ Gruppe: Tipps
Status: (Frage) beantwortet Status 
Datum: 18:21 So 06.01.2013
Autor: heinze

Aufgabe
Betrachten Sie nun die Teilmenge R*_{8} := [mm] {a\in R_8 :ggT(a;8) = 1}, [/mm] also alle Restklassen aus [mm] R_8, [/mm] deren Repräsentanten teilerfremd zu 8 sind. Stellen Sie die Verknüpfungstafel von R*_8 bezüglich der Restklassenmultiplikation modulo 8 auf und begründen Sie,
dass R*_{8};⊙) eine kommutative Gruppe ist.



Ich habe in der ersten Teilaufgabe dazu die Verknüpfungstabelle von [mm] R_8 [/mm] bezüglich der Restklassenmultiplikation bestimmt.

Aber was ist die Teilmenge R*_{8} := [mm] {a\in R_{8} :ggT(a;8) = 1}? [/mm]

Das müsste ja alle a={1,3,5,7} sein

Aber wie soll ich die Verknüpfungstafel davon aufstellen? Sind dann nicht die Elemente 0,1,2,3,4, sondern nur 1,3,5,7 in den Spalten?

kommutative Gruppe heißt hier doch a*b=b*a, richtig?  kommutativ würde in dem Fall ja zutreffen! Aber es handelt sich nicht um eine Gruppe, da die anderen Voraussetzungen wie inverses oder neutrales Element nicht erfüllt sind!

Liege ich so richtig?

LG
heinze

        
Bezug
Restklasse/ Gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 18:29 So 06.01.2013
Autor: Teufel

Hi!

Genau, du hast als Zeilen/Spalten 1,3,5 und 7. Die Verknüpfung ist auch kommutativ (weil die Tabelle eine symmetrische Matrix sein sollte). Aber du hast dort wirklich eine Gruppe mit neutralen Element 1! z.B. ist das Inverse von 3 die 3 selbst, wegen 3*3=9=1 in [mm] \IZ_8. [/mm] Das siehst du aber auch, wenn du die Tabelle einfach ausfüllst! Dort erkennst du die 1 als neutrales Element und dass in jeder Zeile/Spalte die 1 vorkommt, d.h. jede Zahl ein Inverses hat.

Bezug
                
Bezug
Restklasse/ Gruppe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:32 So 06.01.2013
Autor: heinze

Danke Teufel! Es ist tatsächlich eine Gruppe! ;)

Nun ist alles klar, war mir bloß unsicher!


LG
heinze

Bezug
                
Bezug
Restklasse/ Gruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:58 Di 15.01.2013
Autor: heinze

Ich habe hier noch eine Frage: Es ging um die Zeilen/ Spalten 1,3,5,7

Ich soll zeigen, dass es sich um eine kommutative Gruppe handelt. Aber da hakt es.

1. Abgeschlossenheit weil mit der Multiplikation wieder ein Element aus der Restklasse entsteht

2. Assoziativgesetzt....passt hier auch
3. neutrales Element ist die 1, passt also auch

4. inverses Element: HIER habe ich ein Problem...inverses Element ist doch das, wo ich 0 erhalte, aber das passt bei 1,3,5,7 nirgend, weil in der Tabelle gar keine 0 vorkommt! was nun?

5. kommutativität ist erfüllt!


Und noch eine Frage: Ist [mm] R_8 \{0} [/mm] bezüglich der Restklassenmultiplikation eine Gruppe?? Müsste passen oder?


LG
heinze

Bezug
                        
Bezug
Restklasse/ Gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 21:21 Di 15.01.2013
Autor: leduart

hallo
du hast doch ne multiplikative Gruppe? was ist da das Inverse? Dusolltest posts wirklich gruendlich lesen,das stand doch in Teufels post!
es ist frustrierend zu sehen, wie fluechtig du Hilfen ansiehst!
gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de