www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Restklassenring
Restklassenring < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Restklassenring: Tipp
Status: (Frage) beantwortet Status 
Datum: 21:43 Sa 15.12.2012
Autor: Coup

Aufgabe
Berechne [mm] \overline{2}^{15} [/mm] in [mm] \IZ [/mm] / 31 [mm] \IZ [/mm]

Hallo.
Also ich kenne denke ich die Vorgehensweise.
Begonnen  :
1) [mm] 2^1 [/mm] = 2 [mm] \equiv [/mm] 2 denn 2 mod 31 = 2
2) [mm] 2^2 [/mm] = 4 [mm] \equiv [/mm] 4
3) [mm] 4^2 [/mm] = 16 [mm] \equiv [/mm]  16
[mm] 4)16^2 [/mm] = 256 [mm] \equiv [/mm] 8
5) [mm] 8^2 [/mm] = 64 [mm] \equiv [/mm] 2

Nun betrachte ich mir den Exponenten 15 als Binärzahl : 01111

Da ich ja von rechts nach links lese rechne ich
2*4*16*8 = 1024 mod 31 = 1

Sofern das richtig ist frage ich mich
1. Warum wird die ganze Zeit quadriert ?
2. Warum muss ich den Exponenten als Basis 10 darstellen und nur die 1er multiplizieren ? Ich verstehe also nicht recht was ich hier eigentlich ausgerechnet habe. Das Schema reicht mir ohne Verständnis zu meiner Befriedigung nicht.

lg
Micha



        
Bezug
Restklassenring: Antwort
Status: (Antwort) fertig Status 
Datum: 04:32 So 16.12.2012
Autor: angela.h.b.


> Berechne [mm]\overline{2}^{15}[/mm] in [mm]\IZ[/mm] / 31 [mm]\IZ[/mm]

Hallo,

Dein Ergebnis stimmt, die Vorghensweise finde ich nicht so überzeugend - aber Du hast nichts Falsches getan.

Ich zeig Dir, wie ich es machen würde

[mm] 2\eqiv [/mm] 2
[mm] 2^2\eqiv [/mm] 4
[mm] 2^3\eqiv [/mm] 8
[mm] 2^4\eqiv [/mm] 16
[mm] 2^5\eqiv [/mm] 1

Mit  [mm] 2^5=1 [/mm] mod 31 kann ich etwas anfangen:

[mm] 2^{15}=2^{5}*2^{5}*2^{5}\eqiv [/mm] 1*1*1 = 1.


Ich greife noch kurz Dein Vorgehen auf:

Du hast

[mm] 2^{1}\equiv [/mm] 2
[mm] 2^{2^{1}}\equiv [/mm] 4
[mm] 2^{2^{2}}\equiv [/mm] 16
[mm] 2^{2^{3}}\ [/mm] equiv 8

Du hast 15 geschrieben als [mm] 1+2^{1}+2^{2}+2^{3}, [/mm]

also ist [mm] 2^{15}=2^{1+2^{1}+2^{2}+2^{3}}=2^{1}*2^{2}*2^{4}*2^{8}=2*4*16*8=2*16*4*8=32*32=\equiv [/mm] 1*1=1

LG Angela


Bezug
        
Bezug
Restklassenring: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:07 So 16.12.2012
Autor: felixf

Moin!

> Sofern das richtig ist frage ich mich
> 1. Warum wird die ganze Zeit quadriert ?
>  2. Warum muss ich den Exponenten als Basis 10 darstellen
> und nur die 1er multiplizieren ? Ich verstehe also nicht
> recht was ich hier eigentlich ausgerechnet habe. Das Schema
> reicht mir ohne Verständnis zu meiner Befriedigung nicht.

[]Hier wird das Verfahren ausfuehrlich beschrieben. Es ist eins der (asymptotisch) effizientesten Verfahren um grosse Potenzen auszurechnen.

In diesem Fall haettest du aber auch nutzen koennen, dass das Inverse von 2 einfach anzugeben ist: $2 [mm] \cdot [/mm] 16 = 32 [mm] \equiv [/mm] 1 [mm] \pmod{31}$, [/mm] und damit ist [mm] $2^{15} \equiv 2^{16} \cdot [/mm] 16 [mm] \pmod{31}$. [/mm] Und [mm] $2^{16}$ [/mm] kannst du durch's Quadrieren ausrechnen. Damit hast du dir das Zusammenmultiplizieren der Zweierpotenzen gespart (und musst nur mit dem Inversen von 2 multiplizieren).

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de