www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Restklassenringe
Restklassenringe < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Restklassenringe: idee
Status: (Frage) beantwortet Status 
Datum: 14:42 So 26.10.2008
Autor: mathemonster

Aufgabe
sei n [mm] \in \IN [/mm] \ {0,1}. zeigen siwe dass die folgenden bed. äquivalent sind

1) der restklassenring [mm] \IZ [/mm] / [mm] n\IZ [/mm] ist nullteilerfrei
2)  "        "                      "   "      ist körper
3) die natürliche zahl n ist primzahl

so... erstmal 1-->2
wenn [mm] \IZ [/mm] / [mm] n\IZ [/mm] nullteilerfrei ist, bedeutet das ja, dass die multiplikation abgeschlossen ist und es somit für jedes element /{0} ein multiplikatives inverses vorhanden.
nur wie zeige ich das?

bei den anderen beiden 2-->3 und 3-->1 hätte ich gern ein paar tipps wie man vorgehen kann.
ich hab das schon in mehreren büchern und internet(wiki) nachgelesen aber überall steht nur das das so ist und nicht warum.
ihr wärt mir echt eine große hilfe, schon mal dank im voraus.

        
Bezug
Restklassenringe: Antwort
Status: (Antwort) fertig Status 
Datum: 10:41 Mo 27.10.2008
Autor: angela.h.b.


> sei n [mm]\in \IN[/mm] \ {0,1}. zeigen siwe dass die folgenden bed.
> äquivalent sind
>  
> 1) der restklassenring [mm]\IZ[/mm] / [mm]n\IZ[/mm] ist nullteilerfrei
>  2)  "        "                      "   "      ist körper
>  3) die natürliche zahl n ist primzahl
>  so... erstmal 1-->2
>  wenn [mm]\IZ[/mm] / [mm]n\IZ[/mm] nullteilerfrei ist, bedeutet das ja, dass
> die multiplikation abgeschlossen ist

Hallo,

was genau meinst Du hiermit?

> und es somit für jedes
> element /{0} ein multiplikatives inverses vorhanden.
>  nur wie zeige ich das?

Schreib' dir erstmal auf, was Nullteilerfreiheit  hier bedeutet.
Man könnte dann mit dem lemma von Bezout weitermachen.

>  
> bei den anderen beiden 2-->3

Überlege Dir, was wäre, wenn n keine Primzahl wäre.

> und 3-->1

Wenn n keine Primzahl wäre, hätte n mindestens einen echten Teiler.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de