www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Richtungsableitung
Richtungsableitung < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Richtungsableitung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:57 So 13.02.2005
Autor: Sue20

Hallo!

Ich weiß nicht so recht, wie folgende Aufgabe gerechnet wird und ob meine angefangene Rechnung stimmt:

Folgende Funktion ist gegeben: z = f(x,y) = [mm] (x-3)e^{x-1} [/mm] + [mm] 2e^{2y} [/mm] - 4y

Berechnen Sie im Punkt [mm] P(1,\bruch{1}{2},z_{0}) [/mm] die Richtung des steilsten Anstiegs, den größten Anstieg und den größten Anstiegswinkel (Gradmaß)!

Meine Lösung:

Die Richtung des steilsten Anstiegs ist ja gleich dem Gradient im Punkt P, oder?
Also grad f(x,y) = [mm] (f_{x},f_{y}) [/mm] .

[mm] f_{x} [/mm] = [mm] e^{x-1}(x-2) [/mm]
[mm] f_{y} [/mm] = [mm] 4(e^{2y}-1) [/mm]

grad f(x,y) = [mm] (e^{x-1}(x-2),4(e^{2y}-1)) [/mm]
grad [mm] f(1;\bruch{1}{2}) [/mm] = (-1;4(e-1))

Der größte Anstieg ergibt sich ja in Richtung des Gradienten, also:

[mm] \bruch{\partial f}{\partial\vec{v}} [/mm] = [mm] \vec{v}*grad [/mm] f

setzen [mm] \vec{v} [/mm] = [mm] \vec{u} [/mm]

[mm] \vec{u} [/mm] = [mm] \bruch{1}{|\vec{u}|}*\vec{u} [/mm]

[mm] |\vec{u}| [/mm] = [mm] \wurzel{(-1)² + (4e-4)²} [/mm] = [mm] \wurzel{16e²-16e+17} [/mm]

[mm] \bruch{\partial f}{\partial \vec{u}} [/mm] = [mm] \bruch{1}{\wurzel{16e²-16e+17}}* \vektor{-1 \\ 4e-4}* \vektor{-1 \\ 4e-4} [/mm]

Hier komme ich nicht weiter. Kann man das auch irgendwie noch vereinfachen?

Weiterhin ist nach dem größten Anstiegswinkel gefragt.
Dazu steht in meinen Unterlagen nur folgendes:

[mm] \bruch{\partial f}{\partial\vec{v}} [/mm] = [mm] \vec{v}*grad [/mm] f
= [mm] |\vec{v}|*|grad [/mm] f|*cos (phi)
= 1*c*cos (phi) [mm] \in [/mm] [-c,c]

Über jede Antwort wäre ich sehr dankbar!

MfG Sue

        
Bezug
Richtungsableitung: Gradient etc.
Status: (Antwort) fertig Status 
Datum: 09:32 Mo 14.02.2005
Autor: Gnometech

Grüße!

Also, den Gradienten habe ich ebenso herausbekommen. Den Rest hast ja auch schon fast. :-)

Du mußt Dir nur klarmachen, dass es sich beim Gradienten um einen Zeilenvektor handelt, also streng formal genommen um eine Linearform! Der Gradient ist eine lineare Abbildung, in diesem Fall von [mm] $\IR^2$ [/mm] nach [mm] $\IR$ [/mm] und er ordnet jedem Vektor $v [mm] \in \IR^2$ [/mm] den Anstieg in Richtung $v$ zu - und wie? Per Skalarmultiplikation! Das ist gemeint, wenn bei Dir "Vektor mal Vektor" steht.

Dann ist auch klar, wieso die Richtung des steilsten Anstiegs immer in Richtung des Gradienten selbst zu finden ist - das Skalarprodukt ist am größten, wenn die Vektoren in die gleiche Richtung zeigen.

Um den Anstieg selbst zu berechnen, reicht es also, den Gradienten mit sich selbst skalar zu multiplizieren und das Ergebnis einmal durch seine Länge zu teilen (das reflektiert, dass $v$ ein Vektor der Länge 1 sein sollte).

Die Rechnung steht bei Dir schon, nur das Ergebnis noch nicht:

[mm] $\frac{1}{\sqrt{16e^2 - 16e + 17}} \cdot ((-1)^2 [/mm] + (4e - [mm] 4)^2)$ [/mm]

Keine Ahnung, ob man das noch groß vereinfachen kann, aber das ist der steilste Anstieg.

Und für den Winkel gilt das gleiche: sobald man das als Skalarprodukt identifiziert hat, ist es nicht mehr schwer, einen Winkel zu bestimmen... viel Erfolg! :-)

Lars

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de