Richtungsableitung berechnen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Betrachten Sie die Funktion [mm]f:\mathbb{R}^{2}\rightarrow\mathbb{R}[/mm] mit [mm]f(x_{1},x_{2})=x_{1}^{2}+x_{2}^{2}[/mm] .Berechnen Sie die Richtungsableitung von f an der Stelle [mm]a=(-4,3) [/mm] in Richtung [mm]v=\frac{1}{5}(3,4)[/mm] |
Hallo erstmal! Ich habe die ganze Thematik mit Richtungsableitungen etc. noch nicht richtig verinnerlicht und die Klausur steht für nächste Woche an. Die Aufgabe oben ist aus einer alten Klausur.
In einem ähnlichen Posting hier im Forum habe ich einen Rechenweg aufgeschnappt um die Aufgabe zu lösen, weiss aber nicht ob das korrekt ist.
Link: https://matheraum.de/forum/Richtungsableitung_bestimmen/t92863?v=t
Meine Rechnung zu der obigen Aufgabe wäre nun:
[mm]g_{v}(x_{1},x_{2})=\underset{\epsilon\rightarrow0}{lim}\frac{(x_{1}+\frac{3}{5}\varepsilon)^{2}+(x_{2}+\frac{4}{5}\varepsilon)^{2}}{\varepsilon}=\underset{\epsilon\rightarrow0}{lim}\frac{(-4+\frac{3}{5}\varepsilon)^{2}+(3+\frac{4}{5}\varepsilon)^{2}}{\varepsilon}[/mm]
Stimmt das soweit oder ist da schon irgendwas grundlegend falsch?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:44 Mi 17.02.2010 | Autor: | leduart |
Hallo
du hast im Zähler doch ne Differenz von Funktionswerten?
also
[mm] \underset{\epsilon\rightarrow0}{lim}\frac{(x_{1}+\frac{3}{5}\varepsilon)^{2}+(x_{2}+\frac{4}{5}\varepsilon)^{2}-(x_1^2+x_2^2)}{\varepsilon}
[/mm]
Dann ist es richtig.
man kann die Richtungsableitung aber , wenns nur ums berechnen geht aus dem Skalarprodukt von [mm] (f_{x_1},f_{x_1}) [/mm] mir v berechnen.
Gruss leduart
|
|
|
|