www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Richtungsableitungen
Richtungsableitungen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Richtungsableitungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:26 Do 17.05.2007
Autor: barsch

Aufgabe
Sei [mm] g:\IR^2\to\IR [/mm] wie folgt definiert:

g(0,0):=0

[mm] g(x,y):=\bruch{y^{5}}{2*x^{4}+y^{4}} [/mm] für [mm] (x,y)\not=(0,0) [/mm]

Ziege, dass alle Richtungsbleitungen von f in (0,0) existieren.

Hi,

ich weiß nicht so recht, wie ich das zeigen soll.

Ich weiß, dass folgende Formel gilt,


[mm] \partial_{v}g(x)=\limes_{t\rightarrow\ 0}\bruch{g(x+t*v)-g(x)}{t} [/mm]

weiß diese Formel aber nicht richtig anzuwenden.

Und was ist v? Irgendein Vektor?! Der Einheistvektor?

Kann mir da jemand helfen?

MfG

barsch

Ich habe diese Frage in keinem anderen Forum gestellt.


        
Bezug
Richtungsableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:58 Do 17.05.2007
Autor: leduart

Hallo
> Sei [mm]g:\IR^2\to\IR[/mm] wie folgt definiert:
>  
> g(0,0):=0
>  
> [mm]g(x,y):=\bruch{y^{5}}{2*x^{4}+y^{4}}[/mm] für [mm](x,y)\not=(0,0)[/mm]
>  
> Ziege, dass alle Richtungsbleitungen von f in (0,0)
> existieren.

die Richtungsableitungen in einer beliebigen Richtung bekommst du, indem du längs beliebiger Geraden durch den Punkt differenzierst, also im Nullpkt die Geraden [mm] x(t)=t*\cos\alpha; y(t)=t*\sin\alpha. [/mm]
entweder die Kurve einsetzen und dann nach t differenzieren, oder Kettenregel [mm] g_x*x'+g_y*y' [/mm]
in deiner Formel sind dann x und v Vektoren!
Gruss leduart

Bezug
                
Bezug
Richtungsableitungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:48 Do 17.05.2007
Autor: barsch

Hi,

danke für die Antwort, aber ich müsste schon mit der angegebenen Gleichung

> [mm] \partial_{v}g(x)=\limes_{t\rightarrow\ 0}\bruch{g(x+t\cdot{}v)-g(x)}{t} [/mm]

arbeiten.


Dann wäre ja

[mm] \partial_{v}g(x)=\limes_{t\rightarrow\ 0}\bruch{(tv)^5}{t*((2tv)^4+(tv)^5)} [/mm]

aber ab da weiß ich nicht weiter.

MfG

barsch

Bezug
                        
Bezug
Richtungsableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:25 Do 17.05.2007
Autor: leduart

Hallo
> Hi,
>  
> danke für die Antwort, aber ich müsste schon mit der
> angegebenen Gleichung
>  
> > [mm]\partial_{v}g(x)=\limes_{t\rightarrow\ 0}\bruch{g(x+t\cdot{}v)-g(x)}{t}[/mm]
>  
> arbeiten.
>  
>
> Dann wäre ja
>
> [mm]\partial_{v}g(x)=\limes_{t\rightarrow\ 0}\bruch{(tv)^5}{t*((2tv)^4+(tv)^5)}[/mm]

was ist denn bei dir v? es ist doch ein einheitsvektor in ner Richtung, also [mm] (cos\alpha,sin\alpha)^T [/mm]
ebenso [mm] x=(x,y)^T [/mm]
wenn du das machst hast du es auf ein gewöhnliches eindimensionales Problem zurückgeführt und darfst fast sicher auf die kenntnisse für 1d. fkt zurückgreifen.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de