www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Ringhomomorphismus
Ringhomomorphismus < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ringhomomorphismus: Idee
Status: (Frage) beantwortet Status 
Datum: 10:59 Mo 30.11.2015
Autor: MinLi

Aufgabe
Sei R ein kommutativer Ring und I, J [mm] \subset [/mm] R zwei Ideale.

a) Zeigen Sie die Existenz eines injektiver Ringhomomorphismus
[mm] R/(I\cap [/mm] J) [mm] \to [/mm] R/I x R/J .
(Das Produkt von Ringen ist wieder ein Ring und vermöge komponentenweiser Addition und Multiplikation.)

b) Seien I und J koprim, das heißt I+J=(1). Zeigen Sie die Existenz eines Ringisomorphismus [mm] R/(I\cap [/mm] J) [mm] \cong [/mm] R/I x R/J.

Hallo,

ich soll obige Aufgabe lösen, doch ich habe ein paar Fragen dazu was ich alles zeigen muss.
a) Muss ich hier nur die Existenz oder auch die Eindeutigkeit zeigen? Und zur Existenz: es reicht zu zeigen, dass die obige Abbildung existiert und dass sie ein injektiver Ringhomomorphismus ist.

b) Dass diese Abbildung existiert und dass sie ein Homomorphismus ist habe ich in a) schon bewiesen. Es reicht also zu zeigen, dass es sich um eine Bijektion handelt.

Stimmt das so oder habe ich etwas vergessen was man noch zeigen muss?

LG, MinLi

        
Bezug
Ringhomomorphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 11:23 Mo 30.11.2015
Autor: UniversellesObjekt

Hallo,

die Eindeutigkeit musst du nicht zeigen. Allerdings meint der Aufgabensteller eigentlich nicht, dass du die Existenz zeigen sollst, sondern die Injektivität eines ganz speziellen "kanonischen" Homomorphismus.

Also wie sieht der injektive Homomorphismus [mm] $R/(I\cap J)\longrightarrow R/I\times [/mm] R/J$ aus? Er sieht so aus, dass man sich einen Homomorphismus [mm] $R\longrightarrow R/I\times [/mm] R/J$ sucht, der den Kern [mm] $I\cap [/mm] J$ hat. Wie sieht der Homomorphismus [mm] $R\longrightarrow R/I\times [/mm] R/J$ aus? Nun, ein Homomorphismus ins direkte Produkt ist bereits vollständig durch seine beiden Komponentenabbildungen gegeben. In diesem Fall sind das natürlich die Projektionen [mm] $R\longrightarrow [/mm] R/I$ und [mm] $R\longrightarrow [/mm] R/J$.

Zusammengefasst: Zeige, dass der Homomorphismus [mm] $R\longrightarrow R/I\times [/mm] R/J$, [mm] $x\longmapsto (\bar{x},\bar{x})$ [/mm] genau den Kern [mm] $I\cap [/mm] J$ hat und verwende den Homomorphiesatz.

b) genau. Genauer gesagt reicht es zu zeigen, dass [mm] $R\longrightarrow R/I\times [/mm] R/J$ surjektiv ist. Der Rest folgt dann wiederum aus dem Homomorphiesatz. Die Surjektivität dieser Abbildung ist übrigens als "Chinesischer Restsatz" bekannt. Ich empfehle dir trotzdem, die Aufgabe selbst zu lösen und nicht nach diesem Stichwort zu googlen.

Liebe Grüße,
UniversellesObjekt

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de