www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Rotationskörper (Oberfläche?)
Rotationskörper (Oberfläche?) < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rotationskörper (Oberfläche?): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:40 Do 24.01.2008
Autor: rabilein1

Aufgabe
Gibt es eine (fürs Abitur relevante) Formel für die Berechnung des Mantels eines Rotationskörpers?  

Ein Schüler der 13. Klasse sagte, er hätte als Abiturvorbereitungsthema "Rotationskörper".

Die Formel für die Berechnung des Volumens habe ich gefunden:
[mm] V_{rot}=\pi*\integral_{a}^{b}{[f(x)]^{2} dx} [/mm]

So weit, so gut.


Meine Frage ist: Gibt es so etwas auch hinsichtlich der Oberfläche oder genauer gesagt des Mantels eines Rotationskörpers?

Zum Beispiel:
Ein Kegel hat eine Höhe h von 4 cm und einen Radius r von 2 cm. Welche Fläche hat sein Mantel?
Die Mantellinie s wäre dann [mm] \wurzel{4^{2}+2^{2}}, [/mm] also [mm] s=\wurzel{20} [/mm]

Demnach wäre der Mantel [mm] M=\pi2\wurzel{20} cm^{2} [/mm]


Kann man auf dieses Ergebnis auch mit Hilfe der Integralrechnung kommen?
f(x) entspricht r  ,   und  x entspricht h , und die Funktion lautet
[mm] f(x)=\bruch{1}{2}x [/mm]

und die Grenzen des Integrals wären 0 und 4  

aber bei [mm] 2\pi\integral_{0}^{4}{\bruch{1}{2}x dx} [/mm] kommt nur [mm] 8\pi [/mm] raus (und nicht [mm] \pi2\wurzel{20} [/mm] wie oben).
Somit kann man die Volumensformel nicht entsprechend für die Oberfläche anwenden (also statt [mm] \pi*r^{2} [/mm]  einfach [mm] 2\pi*r [/mm] nehmen) ...

...  oder ist die "Oberflächen-Berechnung eines Rotationskörpers" ohnehin nicht relevant (für's Abitur) ?


        
Bezug
Rotationskörper (Oberfläche?): Antwort
Status: (Antwort) fertig Status 
Datum: 15:56 Do 24.01.2008
Autor: zetamy

Hallo,

in der Tat eine solche Formel gibt es:

[mm] M = 2\pi \integral_{a}^{b}{f(x)*\wurzel{1+[f'(x)]^2}dx} [/mm]

wobei M die Mantelfläche des Rotationskörpers.

Zu deiner zweiten Frage: Je nach Bundesland und Lehrer unterschiedlich. Volumen und Oberfläche sind so elementar, ich denke, man sollte die Formeln wissen.

Gruß zetamy

Bezug
                
Bezug
Rotationskörper (Oberfläche?): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:07 Do 24.01.2008
Autor: rabilein1

Vielen vielen Dank.

Ich hatte die Formel bisher nirgends gefunden (jedenfalls nicht in Schulbüchern oder Formelsammlungen für Schüler).

Aber wie du schon sagtest: Die Abiturprüfungen sind von Schule zu Schule und von Bundesland zu Bundesland extrem unterschiedlich hinsichtlich des Schwierigkeitsgrades.

Deshalb will ich mich nicht darauf verlassen, dass so etwas nicht drankommen kann.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de