www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Rotationsvolumen
Rotationsvolumen < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rotationsvolumen: auflösen
Status: (Frage) beantwortet Status 
Datum: 20:04 Do 03.11.2011
Autor: twertich

Aufgabe
25y²=-x³+5x²



a) bestimme die nullstellen

b) bestimme den hochpunkt der kurve

c) Rotationsvolumen um die x-achse </task>
Guten abend

ich verstehe diese aufgabe nicht weil ich nicht weiß was ich mit den 25y² machen soll
bitte um die lösung wie man zumindestens die nullstellen ausrechnen kann ich hatte bisjetzt noch nie so eine aufgabe
soll man die 25y² auf die gleiche seite bringen wenn ja wie weiter auflösen?
oder wenn man ein x ausklammert geht das überhaupt ,weil das y² stört doch da?
25y²=-x³+5x²    x ausklammern
-x²+5x-25y
ist dies möglich?

        
Bezug
Rotationsvolumen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:27 Do 03.11.2011
Autor: reverend

Hallo twertich,

Formeleditor! So sind die Exponenten einfach Mist und verschwinden eben ab und zu auch noch.

> 25y²=-x³+5x²
>
> a) bestimme die nullstellen
>  
> b) bestimme den hochpunkt der kurve
>  
> c) Rotationsvolumen um die x-achse
>  Guten abend
>  
> ich verstehe diese aufgabe nicht weil ich nicht weiß was
> ich mit den 25y² machen soll

Die Funktion ist implizit gegeben. Zum Graphen gehören alle Punkte, die die Funktionsgleichung erfüllen.
Du kannst die Funktion in einen positiven und einen negativen Teil zerlegen:

[mm] f_+(x)=\wurzel{-x^3+5x^2},\quad f_-(x)=-\wurzel{-x^3+5x^2} [/mm]

> bitte um die lösung wie man zumindestens die nullstellen
> ausrechnen kann ich hatte bisjetzt noch nie so eine
> aufgabe

f_+(x) und f_-(x) haben die gleichen Nullstellen. Die findest Du so wie sonst auch.

>  soll man die 25y² auf die gleiche seite bringen wenn ja
> wie weiter auflösen?

Siehe oben.

>  oder wenn man ein x ausklammert geht das überhaupt ,weil
> das y² stört doch da?
>  25y²=-x³+5x²    x ausklammern
>  -x²+5x-25y
>   ist dies möglich?

Natürlich nicht, es sei denn, x=y. Das war aber nicht gegeben.

Grüße
reverend


Bezug
                
Bezug
Rotationsvolumen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:29 Fr 04.11.2011
Autor: twertich

Hallo

okay verstehe fällt dann die 25 bei den y einfach weg?

ich habe mal so gerechnet als würde die einach wegfallen

[mm] y=\wurzel{-x^{3}+5x^{2}} [/mm]      mal hoch 2

[mm] y=-x^{3}+5x^{2} [/mm]      x ausgeklammert

[mm] x^{2}(-x+5) [/mm]      x1/2=0

-x+5=0
x=5

x3=5


n1(0/0)        n2(5/0)


bitte um rückmeldung ob das richtig ist

Danke
Grüße Thomas


Bezug
                        
Bezug
Rotationsvolumen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:45 Fr 04.11.2011
Autor: MathePower

Hallo twertich,

> Hallo
>
> okay verstehe fällt dann die 25 bei den y einfach weg?

>


Bei der Bestimmung der Nullstellen, ja.

  

> ich habe mal so gerechnet als würde die einach wegfallen
>  
> [mm]y=\wurzel{-x^{3}+5x^{2}}[/mm]      mal hoch 2
>  
> [mm]y=-x^{3}+5x^{2}[/mm]      x ausgeklammert
>  
> [mm]x^{2}(-x+5)[/mm]      x1/2=0
>  
> -x+5=0
>  x=5
>  
> x3=5
>  
>
> n1(0/0)        n2(5/0)
>  
>
> bitte um rückmeldung ob das richtig ist
>


Ja, das ist richtig. [ok]


> Danke
> Grüße Thomas
>  


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de