www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Numerik" - Rundungsfehleranalyse
Rundungsfehleranalyse < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rundungsfehleranalyse: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:27 So 15.11.2009
Autor: steppenhahn

Aufgabe
Zur Auswertung eines Polynoms der Ordnung k mit

$f(x) = [mm] \sum_{i=0}^{k}a_{i}*x^{i}$ [/mm]

wird gewöhnlich das Horner-Schema verwendet. Hierbei berechnet man im Schritt n:

[mm] $z_{n} [/mm] = [mm] x*z_{n-1} [/mm] + [mm] a_{k-n}$, [/mm]

wobei [mm] $z_{0} [/mm] := [mm] a_{k}$. [/mm] Dann gilt [mm] $z_{k} [/mm] = f(x)$. Zeigen Sie, dass dieser Algorithmus numerisch stabiler ist als das einzelne Auswerten der Summanden von f(x), indem sie eine Rundungsfehleranalyse beider Verfahren durchführen.

Hallo!

Bei der obigen Aufgabe stecke ich fest.

Bei der Rundungsfehleranalyse einer Funktion F berechne ich ja den relativen Fehler: [mm] $\frac{F-rd(F)}{F}$, [/mm] wobei $rd(F)$ das F ist, bei welchem während der Rechnungen immer gerundet wurde.

Ich habe nun mit der Analyse des Horner-Schemas begonnen:

[mm] $rd(z_{n}) [/mm] = [mm] \Big(x*rd(z_{n-1})*(1+\epsilon_{1})+a_{k-n}\Big)*(1+\epsilon_{2}) \overset{1.Naeherung}{=} \Big(x*rd(z_{n-1}) [/mm] + [mm] a_{k-n}\Big) [/mm] + [mm] (\epsilon_{1} [/mm] + [mm] \epsilon_{2})*x*rd(z_{n-1}) [/mm] + [mm] \epsilon_{2}*a_{k-n}$ [/mm]

Außerdem ist im n-ten Schritt die exakte Rechnung an der Stelle:

[mm] $z_{n} [/mm] = [mm] x*rd(z_{n-1}) [/mm] + [mm] a_{n-k}$, [/mm]

So... Nun kann ich den absoluten Fehler berechnen:

[mm] $\Delta z_{n} [/mm] = [mm] z_{n} [/mm] - [mm] rd(z_{n}) [/mm] = [mm] \Big(x*rd(z_{n-1}) [/mm] + [mm] a_{n-k}\Big) [/mm] - [mm] \Bigg(\Big(x*rd(z_{n-1}) [/mm] + [mm] a_{k-n}\Big) [/mm] + [mm] (\epsilon_{1} [/mm] + [mm] \epsilon_{2})*x*rd(z_{n-1}) [/mm] + [mm] \epsilon_{2}*a_{k-n}\Bigg)$ [/mm]

$= [mm] -(\epsilon_{1} [/mm] + [mm] \epsilon_{2})*x*rd(z_{n-1}) [/mm] - [mm] \epsilon_{2}*a_{k-n}$ [/mm]

>>> Das ist jetzt praktisch der absolute Fehler, der während der Rechnung im n-ten Schritt entsteht, oder?

>>> Aber kann ich den absoluten Fehler auch ohne Rekursion darstellen?

Danke für Eure Hilfe,

Stefan


        
Bezug
Rundungsfehleranalyse: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:09 So 15.11.2009
Autor: Al-Chwarizmi


> Zur Auswertung eines Polynoms der Ordnung k mit
>  
>     [mm]f(x) = \sum_{i=0}^{k}a_{i}*x^{i}[/mm]
>  
> wird gewöhnlich das Horner-Schema verwendet. Hierbei
> berechnet man im Schritt n:
>  
>     [mm]z_{n} = x*z_{n-1} + a_{k-n}[/mm]
>  
> wobei [mm]z_{0} := a_{k}[/mm]. Dann gilt [mm]z_{k} = f(x)[/mm]. Zeigen Sie,
> dass dieser Algorithmus numerisch stabiler ist als das
> einzelne Auswerten der Summanden von f(x), indem sie eine
> Rundungsfehleranalyse beider Verfahren durchführen.


Hallo Stefan,

bei der Art von Analyse, wie du sie da durchführst, kenne
ich mich nicht wirklich aus. Aber ich hätte eine kleine
Frage:
Was genau ist denn die alternative Berechnungsweise mit
der "einzelnen Auswertung der Summanden" ? Ich nehme
einmal an, dass dann der i-te Summand [mm] s_i [/mm] so berechnet wird:

       $\ [mm] s_i\ [/mm] =\ [mm] a_i*\underbrace{x*x*.....*x}_{i\ Faktoren}$ [/mm]

Damit kommt man natürlich auf viel mehr Multiplikationen,
was die Güte der Rechnung bestimmt beeinträchtigen wird.
Bei einer Multiplikation addieren sich die relativen Fehler,
so dass also bei der Berechnung des Summanden [mm] s_i [/mm] ein
relativer Fehler

      [mm] \delta(s_i)=\delta(a_i)+i*\delta(x) [/mm]

herauskommt.

LG    Al  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de