www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Runge-Kutta-Polygonzug
Runge-Kutta-Polygonzug < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Runge-Kutta-Polygonzug: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:39 Sa 10.11.2012
Autor: guitarhero

Aufgabe
[mm] y'=sin(x^{2}+y), [/mm] y(0)=1

a)Berechnen Sie eine Annäherung zu y(1) mit dem Euler-Cauchy-Polygonzug und einer Schrittweite [mm] h=\bruch{1}{2} [/mm]
b)[...]mit dem Runga-Kutta Polygonzug und einer Schrittweite [mm] h=\bruch{1}{2} [/mm]

Hallo,

nachdem ich nun das Euler-Cauchy-Verfahren doch (hoffentlich ;-)) verstanden habe, tue ich mich nun aber auch mit dem Runge-Kutta-Polygonzug etwas schwer.

Liegt hier vielleicht auch an der Funktion.

Habe für a) folgendes gerechnet:

[mm] u_{0}=1 [/mm]
[mm] u_{1}=u_{0}+h*f(x_{0},u_{0})=1+\bruch{1}{2}sin(1) [/mm]
[mm] u_{2}=u_{1}+\bruch{1}{2}sin((\bruch{1}{2})^{2}+1+\bruch{1}{2}sin(1)) \rightarrow u_{2}\approx [/mm] y(1) [mm] \approx [/mm] 1,92


Wenn ich das nun mit Runge-Kutta probiere, komme ich auf einen elends langen Ausdruck. Also habe ich da entweder eine falsche Vorgehensweise oder ich sehe nicht, wie ich das vereinfachen kann.

[mm] u_{j+1}=u{j}+\bruch{h}{6}(k_{1}+2k_{2}+2k_{3}+k_{4}) [/mm]

[mm] k_{1}=f(x_{j},u{j}) [/mm] = [mm] f(j*h,u_{j}) [/mm] = [mm] sin(\bruch{1}{4}j^{2}+u_{j}) [/mm]

[mm] k_{2}=f(x_{j}+\bruch{h}{2},u_{j}+\bruch{h}{2}k_{1}) [/mm] = [mm] sin((\bruch{1}{2}j+\bruch{1}{4})^{2}+u_{j}+\bruch{1}{4}[k_{1}]) [/mm]

So, hier sieht man schon, dass das Ganze ziemlich lange Ausdrücke werden, wenn ich das nun noch für [mm] k_{3} [/mm] und [mm] k_{4} [/mm] mache.

Ist das nun doch so gedacht oder habe ich hier schon Fehler drin?
Habe noch probiert [mm] k_{1}..k_{4} [/mm] direkt auszurechnen für [mm] u_{1}, [/mm] weil da ja [mm] u_{j}=u_{0}=1 [/mm] und j=0 ist, aber da habe ich auch jedes Mal etwas anderes herausbekommen, weil man da so durcheinander kommt mit dem Taschenrechner..

Ich hoffe, jemand kann mir sagen, was ich falsch gemacht habe.

Gruß,
guitarhero

        
Bezug
Runge-Kutta-Polygonzug: Antwort
Status: (Antwort) fertig Status 
Datum: 20:10 Sa 10.11.2012
Autor: MathePower

Hallo guitarhero,

> [mm]y'=sin(x^{2}+y),[/mm] y(0)=1
>  
> a)Berechnen Sie eine Annäherung zu y(1) mit dem
> Euler-Cauchy-Polygonzug und einer Schrittweite
> [mm]h=\bruch{1}{2}[/mm]
>  b)[...]mit dem Runga-Kutta Polygonzug und einer
> Schrittweite [mm]h=\bruch{1}{2}[/mm]
>  Hallo,
>  
> nachdem ich nun das Euler-Cauchy-Verfahren doch
> (hoffentlich ;-)) verstanden habe, tue ich mich nun aber
> auch mit dem Runge-Kutta-Polygonzug etwas schwer.
>  
> Liegt hier vielleicht auch an der Funktion.
>  
> Habe für a) folgendes gerechnet:
>  
> [mm]u_{0}=1[/mm]
>  [mm]u_{1}=u_{0}+h*f(x_{0},u_{0})=1+\bruch{1}{2}sin(1)[/mm]
>  
> [mm]u_{2}=u_{1}+\bruch{1}{2}sin((\bruch{1}{2})^{2}+1+\bruch{1}{2}sin(1)) \rightarrow u_{2}\approx[/mm]
> y(1) [mm]\approx[/mm] 1,92
>  


[ok]


>
> Wenn ich das nun mit Runge-Kutta probiere, komme ich auf
> einen elends langen Ausdruck. Also habe ich da entweder
> eine falsche Vorgehensweise oder ich sehe nicht, wie ich
> das vereinfachen kann.
>  
> [mm]u_{j+1}=u{j}+\bruch{h}{6}(k_{1}+2k_{2}+2k_{3}+k_{4})[/mm]
>  
> [mm]k_{1}=f(x_{j},u{j})[/mm] = [mm]f(j*h,u_{j})[/mm] =
> [mm]sin(\bruch{1}{4}j^{2}+u_{j})[/mm]
>  
> [mm]k_{2}=f(x_{j}+\bruch{h}{2},u_{j}+\bruch{h}{2}k_{1})[/mm] =
> [mm]sin((\bruch{1}{2}j+\bruch{1}{4})^{2}+u_{j}+\bruch{1}{4}[k_{1}])[/mm]
>  
> So, hier sieht man schon, dass das Ganze ziemlich lange
> Ausdrücke werden, wenn ich das nun noch für [mm]k_{3}[/mm] und
> [mm]k_{4}[/mm] mache.
>  
> Ist das nun doch so gedacht oder habe ich hier schon Fehler
> drin?


Das ist so gedacht.


> Habe noch probiert [mm]k_{1}..k_{4}[/mm] direkt auszurechnen für
> [mm]u_{1},[/mm] weil da ja [mm]u_{j}=u_{0}=1[/mm] und j=0 ist, aber da habe
> ich auch jedes Mal etwas anderes herausbekommen, weil man
> da so durcheinander kommt mit dem Taschenrechner..
>  
> Ich hoffe, jemand kann mir sagen, was ich falsch gemacht
> habe.

>  


Du hast nichts falsch gemacht.


> Gruß,
>  guitarhero


Gruss
MathePower

Bezug
                
Bezug
Runge-Kutta-Polygonzug: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:43 So 11.11.2012
Autor: guitarhero

Hey,

okay, war doch nicht zu blöd auszurechnen, wenn man die Werte für [mm] k_{1}..k_{4} [/mm] notiert und nicht mit den ganz genauen Werten rechnet.
Habe nun 1,83 raus mit dem Runge-Kutta, das klingt ja ganz vernünftig.

Danke fürs Absichern :-)

Gruß, guitarhero

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de