www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Satz des Pythagoras
Satz des Pythagoras < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Satz des Pythagoras: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 16:41 Mo 24.01.2005
Autor: Mebie

Hab da eine Aufgabe die ich auch schon versucht habe zu lösen, bloß ich bin mit dem Ergebnis nicht zufrieden...

Aufgabenstellung:
Ein Mast ist 12m hoch und steht direkt am Straßenrand.
Bei einem Sturm knickt er um und die Straße muss in
einer Breite von 5m gesperrt werden.

Frage: In welcher Höhe knickt der Mast um?


Meine Skizze:
[Dateianhang nicht öffentlich]


Meine Idee:
Also ich hab mir gedacht dass man das mit dem Satz des Pythagoras (a²+b² = c²) lösen kann. Hab die Gleichung auf a² umgestellt, für b² 25 eingesetzt und für c² (12-a)² eingesetzt. Das sieht denn so aus ...

[mm] \gdw [/mm]     c² = a² + b²
[mm] \gdw [/mm]     a² = c² - b²
[mm] \gdw [/mm]     a² = (12-a)² - 25
[mm] \gdw [/mm]     a² = 144 - 24a + a² - 25
[mm] \gdw [/mm]      0 = 144 - 24a - 25
[mm] \gdw [/mm]      0 = 219 - 24a
[mm] \gdw [/mm]   -219 = -24a
[mm] \gdw [/mm] 219/24 = a

Aber da kommt so ein untypischer eckliger Bruch raus. Normalerweise kommen in unseren Aufgaben einigermaßen einfache Zahlen raus. Ihr wisst was ich meine  

Deswegen zweifel ich daran, dass diese Aufgabe so korrekt gelöst wurde. Habt ihr evtl. noch andere Lösungsvorschläge oder findet ihr einen Fehler in meinem Lösungsweg?

Wäre für schnelle Antworten echt dankbar

Dateianhänge:
Anhang Nr. 1 (Typ: gif) [nicht öffentlich]
        
Bezug
Satz des Pythagoras: fast alles richtig
Status: (Antwort) fertig Status 
Datum: 17:14 Mo 24.01.2005
Autor: hobbymathematiker


> Hab da eine Aufgabe die ich auch schon versucht habe zu
> lösen, bloß ich bin mit dem Ergebnis nicht zufrieden...
>  
> Aufgabenstellung:
>  Ein Mast ist 12m hoch und steht direkt am Straßenrand.
>  Bei einem Sturm knickt er um und die Straße muss in
>  einer Breite von 5m gesperrt werden.
>  
> Frage: In welcher Höhe knickt der Mast um?
>  
>
> Meine Skizze:
>  [Dateianhang nicht öffentlich]
>  
>
> Meine Idee:
>  Also ich hab mir gedacht dass man das mit dem Satz des
> Pythagoras (a²+b² = c²) lösen kann. Hab die Gleichung auf
> a² umgestellt, für b² 25 eingesetzt und für c² (12-a)²
> eingesetzt. Das sieht denn so aus ...
>  
> [mm]\gdw[/mm]     c² = a² + b²
>   [mm]\gdw[/mm]     a² = c² - b²
>   [mm]\gdw[/mm]     a² = (12-a)² - 25
>   [mm]\gdw[/mm]     a² = 144 - 24a + a² - 25
>   [mm]\gdw[/mm]      0 = 144 - 24a - 25
>   [mm]\gdw[/mm]      0 = 219 - 24a   [notok]

    [mm]\gdw[/mm]      0 = 119 - 24a


>   [mm]\gdw[/mm]   -219 = -24a
>   [mm]\gdw[/mm] 219/24 = a

  [mm]\gdw[/mm] 119/24 = a
  [mm]\gdw[/mm] a  [mm] \approx [/mm] 5


>  
> Aber da kommt so ein untypischer eckliger Bruch raus.
> Normalerweise kommen in unseren Aufgaben einigermaßen
> einfache Zahlen raus. Ihr wisst was ich meine  
>
> Deswegen zweifel ich daran, dass diese Aufgabe so korrekt
> gelöst wurde. Habt ihr evtl. noch andere Lösungsvorschläge
> oder findet ihr einen Fehler in meinem Lösungsweg?
>  
> Wäre für schnelle Antworten echt dankbar  


Bezug
                
Bezug
Satz des Pythagoras: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:35 Mo 24.01.2005
Autor: Mebie

Ups, das mit den 219 war ein tippfehler *schäm*
thx dass du mir so schnell geantwortet hast *knuddel*

hmm, du meinst also das stimmt dann so?
tjo...

Bezug
        
Bezug
Satz des Pythagoras: antwort
Status: (Antwort) fertig Status 
Datum: 22:29 Di 25.01.2005
Autor: Odie


> Hab da eine Aufgabe die ich auch schon versucht habe zu
> lösen, bloß ich bin mit dem Ergebnis nicht zufrieden...
>  
> Aufgabenstellung:
>  Ein Mast ist 12m hoch und steht direkt am Straßenrand.
>  Bei einem Sturm knickt er um und die Straße muss in
>  einer Breite von 5m gesperrt werden.
>  
> Frage: In welcher Höhe knickt der Mast um?
>  
>
> Meine Skizze:
>  [Dateianhang nicht öffentlich]
>  
>
> Meine Idee:
>  Also ich hab mir gedacht dass man das mit dem Satz des
> Pythagoras (a²+b² = c²) lösen kann. Hab die Gleichung auf
> a² umgestellt, für b² 25 eingesetzt und für c² (12-a)²
> eingesetzt. Das sieht denn so aus ...
>  
> [mm]\gdw[/mm]     c² = a² + b²
>   [mm]\gdw[/mm]     a² = c² - b²
>   [mm]\gdw[/mm]     a² = (12-a)² - 25  
>   [mm]\gdw[/mm]     a² = 144 - 24a + a² - 25
>   [mm]\gdw[/mm]      0 = 144 - 24a - 25
>   [mm]\gdw[/mm]      0 = 219 - 24a
>   [mm]\gdw[/mm]   -219 = -24a
>   [mm]\gdw[/mm] 219/24 = a

wenn man den von dir schon angesprochenen Tippfehler ignoriert komme ich auf das selbe Ergebnis... Allerdings benutzt du in der Rechnung andere Bezeichnungen als in der Skizze.

>  
> Aber da kommt so ein untypischer eckliger Bruch raus.
> Normalerweise kommen in unseren Aufgaben einigermaßen
> einfache Zahlen raus. Ihr wisst was ich meine  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de