www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Satz von Moivre
Satz von Moivre < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Satz von Moivre: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:30 Do 29.05.2008
Autor: TheQ

Aufgabe
Drücken Sie cos(5phi) und sin(5phi) als Funktionen von cos(phi) und sin(phi) für beliebige Winkel phi aus.

Dies soll man mit Hilfe des Satzes von Moivre lösen, ich stehe allerdings komplett auf dem Schlauch, wie das geht.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Satz von Moivre: Antwort
Status: (Antwort) fertig Status 
Datum: 13:46 Do 29.05.2008
Autor: fred97

Es ist cos(t) +i sin(t) = exp(it)
und (Moivre)
Es ist cos(nt) +i sin(nt) = exp(nit) = [mm] (exp(it))^n [/mm]

Also cos(5t) +i sin(5t) = exp(5it) = [mm] (exp(it))^5 [/mm] = (cos(t) +i [mm] sin(t))^5. [/mm]

Jetzt rechts ausmultiplizieren und dan Real- und Imaginärteil vergleichen

FRED

Bezug
                
Bezug
Satz von Moivre: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:18 Do 29.05.2008
Autor: TheQ

Ich verstehe nicht ganz was das heisst. Was ist denn plötzlich t? Ist das phi? Und was bedeutet exp (it)? Bis jetzt aber vielen Dank für die schnelle Hilfe

Bezug
                        
Bezug
Satz von Moivre: Antwort
Status: (Antwort) fertig Status 
Datum: 15:41 Do 29.05.2008
Autor: fred97

t ist phi

exp(it) ist e hoch it

Bezug
                                
Bezug
Satz von Moivre: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:05 Di 03.06.2008
Autor: TheQ

Irgendwie kriege ich das trotzdem nicht hin. Ich multipliziere es in einer riesigen Rechnung aus. Als Lösung sollte dabei folgendes raus kommen:

cos(5phi) = [mm] cos^5(phi) [/mm] - [mm] 10cos^3(phi)sin^2(phi) [/mm] + [mm] 5cos(phi)sin^4(phi) [/mm]

und

sin(5phi) = [mm] cos^4(phi)sin(phi) [/mm] - [mm] 10cos^2(phi)sin^3(phi) [/mm] + [mm] sin^5(phi) [/mm]

Nur habe ichkeinen blassen schimmer wie ich vom ausmultiplizierten

(cos(phi) + [mm] i*sin(phi))^5 [/mm] auf diese Resultate komme. Und warum fehlt in beiden Lösungen das i?

Bezug
                                        
Bezug
Satz von Moivre: Antwort
Status: (Antwort) fertig Status 
Datum: 10:13 Di 03.06.2008
Autor: angela.h.b.


> Irgendwie kriege ich das trotzdem nicht hin. Ich
> multipliziere es in einer riesigen Rechnung aus. Als Lösung
> sollte dabei folgendes raus kommen:
>  
> cos(5phi) = [mm]cos^5(phi)[/mm] - [mm]10cos^3(phi)sin^2(phi)[/mm] +
> [mm]5cos(phi)sin^4(phi)[/mm]
>  
> und
>  
> sin(5phi) = [mm]cos^4(phi)sin(phi)[/mm] - [mm]10cos^2(phi)sin^3(phi)[/mm] +
> [mm]sin^5(phi)[/mm]
>  
> Nur habe ichkeinen blassen schimmer wie ich vom
> ausmultiplizierten
>  
> (cos(phi) + [mm]i*sin(phi))^5[/mm] auf diese Resultate komme. Und
> warum fehlt in beiden Lösungen das i?

Hallo,


wenn Du die Formel v. Moivre kennst, weißt Du, daß für z=r(cost+isint) gilt

[mm] z^n=r^n(cos(nt)+isin(nt))=r^ncos(nt)+ir^nsin(nt) [/mm]


Du kannst [mm] z^n [/mm] aber auch durch fleißiges Multiplizieren oder Verwendung des binomischen Satzes bekommen.

Du hast dann eine Summe, deren Summanden Produkte von Potenzen des sin und cos und ggf. der Zahl i sind.

Sortiere nun so, daß Du alle Ausdrücke mit i zusammen faßt und alle ohne:  [mm] z^n= [/mm] (...) + i*(...).


Und nun mach einen Koeffizientenvergleich mit dem Resultat, welches Du mit der Moivreformel erhalten hast.


Gruß v. Angela




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de