www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Satz zu TdV für isolierte NST
Satz zu TdV für isolierte NST < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Satz zu TdV für isolierte NST: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:26 Mo 25.01.2010
Autor: MarRaph

Aufgabe
Seien f: [mm] I_x \to \IR [/mm] und g: [mm] I_y \to \IR [/mm] gegeben und steig, [mm] \eta [/mm] ein innerer Punkt von [mm] I_y [/mm] und [mm] g(\eta) [/mm] = 0; sei ferner [mm] g(\eta) \not= [/mm] 0 in einem Intervall [mm] (\eta, \eta [/mm] + [mm] \alpha) [/mm] bzw. [mm] (\eta [/mm] - [mm] \alpha, \eta) [/mm] mit [mm] \alpha [/mm] > 0.
Wenn das uneigentliche Integral [mm] \integral_{\eta}^{\eta + \alpha}{\bruch{1}{g(z)} dz} [/mm] bzw. [mm] \integral_{\eta - \alpha}^{\eta}{\bruch{1}{g(z)} dz} [/mm] divergent ist, gibt es keine Lösungen der Dgl. y'(x) = g(y) [mm] \* [/mm] f(x), die von oben bzw. unten in die konstante Funktion y(x) [mm] \equiv \eta [/mm] einmünden.

Die Vorbemerkungen des Satzes sind erfüllt, wenn g(y) an der Stelle [mm] \eta [/mm] eine isolierte Nullstelle hat und dort lokal Lipschitz-stetig ist, d.h. falls [mm] \exists [/mm] L [mm] \in \IR^{+} [/mm] : [mm] |g(\eta) [/mm] - g(y)| = |g(y)| [mm] \le L|\eta [/mm] - y| für [mm] \forall [/mm] y in einer Umgebung von [mm] \eta [/mm] .
Dann ist [mm] \bruch{1}{|g(z)|} \ge \bruch{1}{L |z - \eta|} [/mm] und falls g(y) > 0 in [mm] (\eta, \eta [/mm] + [mm] \alpha) [/mm] gilt, so folgt:
[mm] \integral_{\eta}^{\eta + \alpha}{\bruch{1}{|g(z)|} dz} \ge \integral_{\eta}^{\eta + \alpha}{\bruch{1}{|z - \eta |} dz} [/mm]
und
[mm] \bruch{1}{L} [/mm] = [mm] \integral_{0}^{\infty}{\bruch{1}{|g(u)|} du} [/mm]

Hallo,
ich bereite mich gerade auf meine Abschlussklausur vor und verstehe nicht, wie mein Prof im oben dargestellten Zusammenhang auf die Aussage zur Lipschitz-Konstanten mit dem rot hervorgehobenen Gleichheitszeichen kommt.

Ich wäre euch für eine Erklärung dankbar.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Satz zu TdV für isolierte NST: Antwort
Status: (Antwort) fertig Status 
Datum: 03:55 Mo 08.02.2010
Autor: felixf

Moin!

> Seien f: [mm]I_x \to \IR[/mm] und g: [mm]I_y \to \IR[/mm] gegeben und steig,
> [mm]\eta[/mm] ein innerer Punkt von [mm]I_y[/mm] und [mm]g(\eta)[/mm] = 0; sei ferner
> [mm]g(\eta) \not=[/mm] 0 in einem Intervall [mm](\eta, \eta[/mm] + [mm]\alpha)[/mm]
> bzw. [mm](\eta[/mm] - [mm]\alpha, \eta)[/mm] mit [mm]\alpha[/mm] > 0.
>  Wenn das uneigentliche Integral [mm]\integral_{\eta}^{\eta + \alpha}{\bruch{1}{g(z)} dz}[/mm]
> bzw. [mm]\integral_{\eta - \alpha}^{\eta}{\bruch{1}{g(z)} dz}[/mm]
> divergent ist, gibt es keine Lösungen der Dgl. y'(x) =
> g(y) [mm]\*[/mm] f(x), die von oben bzw. unten in die konstante
> Funktion y(x) [mm]\equiv \eta[/mm] einmünden.
>  
> Die Vorbemerkungen des Satzes sind erfüllt, wenn g(y) an
> der Stelle [mm]\eta[/mm] eine isolierte Nullstelle hat und dort
> lokal Lipschitz-stetig ist, d.h. falls [mm]\exists[/mm] L [mm]\in \IR^{+}[/mm]
> : [mm]|g(\eta)[/mm] - g(y)| = |g(y)| [mm]\le L|\eta[/mm] - y| für [mm]\forall[/mm] y
> in einer Umgebung von [mm]\eta[/mm] .
>  Dann ist [mm]\bruch{1}{|g(z)|} \ge \bruch{1}{L |z - \eta|}[/mm] und
> falls g(y) > 0 in [mm](\eta, \eta[/mm] + [mm]\alpha)[/mm] gilt, so folgt:
>  [mm]\integral_{\eta}^{\eta + \alpha}{\bruch{1}{|g(z)|} dz} \ge \integral_{\eta}^{\eta + \alpha}{\bruch{1}{|z - \eta |} dz}[/mm]

Das muss doch [mm]\integral_{\eta}^{\eta + \alpha}{\bruch{1}{|g(z)|} dz} \ge \frac{1}{L} \integral_{\eta}^{\eta + \alpha}{\bruch{1}{|z - \eta |} dz}[/mm] lauten!

> und
>  [mm]\bruch{1}{L}[/mm] = [mm]\integral_{0}^{\infty}{\bruch{1}{|g(u)|} du}[/mm]

Dieser Ausdruck macht ueberhaupt keinen Sinn. Erstmal ist $g$ ueberhaupt nicht umbedingt auf $[0, [mm] \infty)$ [/mm] definiert, weswegen das Integral schonmal gar keinen Sinn macht. Kann es sein, dass du (oder/und der Prof) dich an dieser Stelle verschrieben hast?

Ich haette hier eher sowas wie "analog [mm] $\int_{\eta - \alpha}^\eta \frac{1}{|g(z)|} [/mm] dz [mm] \ge \frac{1}{L} \int_{\eta - \alpha}^\eta \frac{1}{|z - \eta|} [/mm] dz$" erwartet, oder etwas im Sinne von [mm] "$\int_\eta^{\eta + \alpha} \frac{1}{|z - \eta|} [/mm] dz = [mm] \int_0^\alpha \frac{1}{z} [/mm] dz = [mm] \infty$". [/mm]

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de