www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Statistik (Anwendungen)" - Schätzen
Schätzen < Statistik (Anwend.) < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schätzen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:11 Mi 16.03.2011
Autor: Pille456

Aufgabe
Ein Meinungsforschungsinstitut möchte den Prozentsatz p der Wahlberechtigten ermitteln,
die bei der nächsten Wahl Partei X wählen. Dafür werden n Wahlberechtigte befragt,
und der Prozentsatz der Wähler von Partei X in der Stichprobe wird als Schätzung für p
genommen. Wie groß muss n gewählt werden, um p auf 0.5% (1%) Genauigkeit mit 99%
(95%) Sicherheit zu schätzen?


Hi!

Also zum Schätzen fiel mir folgender Satz ein:
"Der erforderliche Stichprobenumfang bei einem Bernoulli-Experiment mit unbekannter Erfolgswahrscheinlichkeit p, sodass [mm] P_p(-\varepsilon\le p'-p\le\varepsilon)\ge \alpha [/mm] ist gegeben durch
[mm] n=\bruch{c^2}{4*\varepsilon} [/mm] wobei c die Lösung von [mm] \Phi(c)=\bruch{\alpha+1}{2} [/mm] ist" (p' ist die geschätzte Wahrscheinlichkeit und p die tatsächliche)

In diesem Fall ist dann [mm] \varepsilon=0.0005(0.0001) [/mm] und [mm] \alpha=0.01(0.05) [/mm] wenn ich das richtig verstehe.
[mm] \Phi(c) [/mm] ist soweit ich weiß die Normalverteilung.
Nun wird im Skript immer auf eine "Tabelle der Normalverteilungen" verwiesen. Muss ich immer in diese Tabelle schauen bzw. die allgemein Formel der Normalverteilung umformen, um so eine Aufgabe zu lösen oder geht das auch einfacher?

Gruß
Pille

        
Bezug
Schätzen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:49 Mi 16.03.2011
Autor: luis52

Moin


> wobei c die Lösung von
> [mm]\Phi(c)=\bruch{\alpha+1}{2}[/mm] ist" (p' ist die geschätzte
> Wahrscheinlichkeit und p die tatsächliche)
>  

> Nun wird im Skript immer auf eine "Tabelle der
> Normalverteilungen" verwiesen. Muss ich immer in diese
> Tabelle schauen bzw. die allgemein Formel der
> Normalverteilung umformen, um so eine Aufgabe zu lösen
> oder geht das auch einfacher?

Ja, es folgt naemlich

[mm] $c=\Phi^{-1}\left(\frac{\alpha+1}{2} \right)$. [/mm]

D.h. $c_$ ist ein Prozentpunkt der Normalverteilung, die in jedem vernuenftigen Skript tabelliert sind.

vg Luis




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de