Schätzer < Statistik (Anwend.) < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:18 Di 01.01.2008 | Autor: | jumape |
Aufgabe | Seien [mm] (X_i)_{i\in\IN} [/mm] unabhängig und Poissonverteilt [mm] P_\lambda. [/mm] Bestimmen Sie den Maximum-Likelihood-schätzer für [mm] \lambda. [/mm] |
Also wenn ich Maximum-Likelihood jetzt richtig verstanden habe muss ich den ln auf die Funktion schicken, sie dann nach [mm] \lambda [/mm] ableiten und 0 setzen.
Ich habe allerdings ein Problem damit, dass das Produkt nicht endlich ist.
Mein Ansatz wäre:
F(k)= [mm] e^{-\lambda} \bruch {\lambda^k}{k!}
[/mm]
nun wende ich den ln darauf an und erhalte:
[mm] -\lambda+k ln\lambda [/mm] - ln(k!)
dies leite ich nach [mm] \lambda [/mm] ab und erhalte:
[mm] -1+k\bruch{1}{\lambda}
[/mm]
Wenn ich dies 0 setze bekomme ich für [mm] \lambda:
[/mm]
[mm] \lambda=k
[/mm]
Es wäre nett wenn das mal jemand kommentieren könnte.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:45 Di 01.01.2008 | Autor: | Blech |
> Seien [mm](X_i)_{i\in\IN}[/mm] unabhängig und Poissonverteilt
> [mm]P_\lambda.[/mm] Bestimmen Sie den Maximum-Likelihood-schätzer
> für [mm]\lambda.[/mm]
> Also wenn ich Maximum-Likelihood jetzt richtig verstanden
> habe muss ich den ln auf die Funktion schicken, sie dann
> nach [mm]\lambda[/mm] ableiten und 0 setzen.
Nein!
Das ist nur etwas Mechanik, mit der man oft weiterkommt. ML heißt, Du nimmst als Schätzer für den gesuchten Parameter den Wert, für den die Wahrscheinlichkeit, daß Du Deine gegebene Stichprobe ziehst, am größten ist.
Und das machen wir jetzt:
Wenn wir n unabhängige [mm] $P_\lambda$ [/mm] verteilte ZV [mm] X_i [/mm] haben, dann ist die Wahrscheinlichkeit, für ein bestimmtes Ergebnis [mm] $(k_1,\dots,k_n)\in\IN_0$:
[/mm]
[mm] $P_\lambda ((X_1,\dots,X_n)=(k_1,\dots,k_n))=\produkt_{i=1}^{n}P_\lambda (X_i=k_i)$, [/mm] da die ZV unabhängig sind.
Damit haben wir:
[mm] $P_\lambda((X_1,\dots,X_n)=(k_1,\dots,k_n))=\produkt_{i=1}^{n} e^{-\lambda}\frac{\lambda^{k_i}}{k_i!}=e^{-n\lambda} \lambda^{n\overline{k}}\produkt_{i=1}^{n} \frac{1}{k_i!}$
[/mm]
wobei [mm] $\overline{k}$ [/mm] das arithmetische Mittel der [mm] $k_i$ [/mm] ist.
Jetzt ziehen wir eine Stichprobe, [mm] $h_1,\dots,h_n$, [/mm] für die wir den MLE bestimmen wollen.
D.h. wir suchen das [mm] $\lambda$, [/mm] für das [mm] $P_\lambda((X_1,\dots,X_n)=(h_1,\dots,h_n))$ [/mm] maximal wird.
Da das eine Funktion von [mm] $\lambda$ [/mm] ist und die [mm] $h_i$ [/mm] die Parameter sind, ändern wir die Notation. Wir haben die Likelihood-Funktion
[mm] $L(h_1,\dots,h_n;\lambda)=e^{-n\lambda} \lambda^{n\overline{h}}\produkt_{i=1}^{n} \frac{1}{h_i!}$
[/mm]
und suchen das Maximum in Abhängigkeit von [mm] $\lambda$.
[/mm]
Dafür können wir den Logarithmus nehmen (macht hier kaum einen Unterschied):
[mm] $l(h_1,\dots,h_n;\lambda)=-n\lambda+n\overline{h}\ln\lambda [/mm] + [mm] \ln\left(\produkt_{i=1}^{n} \frac{1}{h_i!}\right)$
[/mm]
Ableiten und gleich 0 setzen:
[mm] $\frac{d\ l}{d\lambda}=-n+\frac{n\overline{h}}{\lambda}=0$
[/mm]
[mm] $\Rightarrow \lambda=\overline{h}$
[/mm]
Die zweite Ableitung ist kleiner 0, d.h. es ist ein Maximum.
Damit ist der MLE für die Intensität einer Poissonverteilung einfach das Stichprobenmittel
> [snip]
> Es wäre nett wenn das mal jemand kommentieren könnte.
Handwerklich machst Du das meiste richtig. Aber weil Du nur die Mechanik kennst, beginnst Du mit der falschen Funktion und kannst das Ergebnis nicht interpretieren. =)
|
|
|
|