www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Schätzung
Schätzung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schätzung: Korrektur
Status: (Frage) für Interessierte Status 
Datum: 12:07 Mo 01.02.2021
Autor: TS85

Aufgabe
Wsk für rot-grün-Blindheit für Mann q [mm] \in [/mm] (0,1), für Frau [mm] q^2. [/mm]
Bei Experiment werden n zufällig Männer und m zufällig Frauen auf r.g.B. untersucht, bei den Männern seien dies n', bei Frauen m'. n+m>0.

i) Auf Basis von n' und m' q schätzen. Formulierung Schätzproblem und ML-Schätzer [mm] \hat_q [/mm] für q bestimmen.
ii) Prüfen des Schätzers durch Spezialfälle m=m'=0 und n=n'=0 und Vergleich mit dem, was man erwarten würde.
iii) zz.: [mm] \hat_q [/mm] im Spezialfall n=n'=0 nicht erwartungstreu.

Hallo,

wegen des Schreibaufwandes eine etwas abgekürzte Version.

i)
1. [mm] \mathcal{X}=\{1,...,|Gesamtbevolkerung|\}^{n+m} [/mm]
2. [mm] \Theta=\{0,1\} [/mm] und [mm] \theta=q \in \Theta [/mm]
3. [mm] P_{\theta}(\{1,...,n\}\cup\{n+1,...,n+m\})=\vektor{n \\ n'}\theta^{n'}(1-\theta)^{n-n'}+\vektor{m \\ m'}(\theta^2)^{m'}(1-\theta^2)^{m-m'} [/mm]
(wie [mm] P_{\theta} [/mm] zu Beginn besser definieren?)
4. Zu Schätzen ist [mm] g(\theta)=\theta [/mm] (Annahme Binomialverteilung, da Auswahl einer Stichprobe aus Grundgesamtheit)

Nachfolgend habe ich den Schätzer einmal univariat für n und m aufgestellt, einmal bivariat (unklar, da nachfolgende Aufgabe ii) auch nur nach n fragt).

[mm] \mathcal{L}_{n',m'}(q)=ln(\vektor{n \\ n'}\q^{n'}(1-q)^{n-n'}+\vektor{m \\ m'}(q^2)^{m'}(1-q^2)^{m-m'}) [/mm]

Und

[mm] \mathcal{L}_{n'}(q)+\mathcal{L}_{m'}(q)= [/mm]
[mm] \underbrace{ln(\vektor{n \\ n'}q^{n'}(1-q)^{n-n'})}_{\mathcal{L}_{n'}(q)}+\underbrace{ln(\vektor{m \\ m'}(q^2)^{m'}(1-q^2)^{m-m'})}_{\mathcal{L}_{m'}(q)} [/mm]

Die 2. Variante führt nach dem Ableiten und Nullsetzen mit n'=m'=0 auf [mm] \hat_q=0, [/mm] was man auch erwarten würde (oder sollen n und m auch =0 sein?)
Die Schätzer sind nachvollziehbar und ergeben Sinn.

Soweit bekannt lässt sich der erste Fall auch nicht nach 0 aufzulösen
und scheint auch zu kompliziert/falsch zu sein.

iii) [mm] E_{\theta}(\hat_g)= E_{\theta}(\hat_q_{n'})=g(\theta)=g(q)=\bruch{n'}{n}=0\not=q, [/mm] da q [mm] \in [/mm] (0,1) (vermutlich aber andere Grund?)

Was kann verbessert werden?



        
Bezug
Schätzung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:56 Mo 01.02.2021
Autor: TS85

Die Bearbeitung hat sich aus Zeitgründen bereits erledigt.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de