www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Rationale Funktionen" - Schar gebrochen-rationaler Fkt
Schar gebrochen-rationaler Fkt < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schar gebrochen-rationaler Fkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:24 Fr 12.03.2010
Autor: Pia90

Aufgabe
Gegeben ist eine Funktionenschar [mm] f_{k} [/mm] mit  [mm] f_{k}(x) =\bruch{4x}{x^2+k} [/mm] , k [mm] \in \IR [/mm]
Für k > 0 liegen auf dem Graphen von [mm] f_{k} [/mm] die beiden Punkte [mm] T_{k}(- \wurzel{k} [/mm] | - [mm] \bruch{2}{\wurzel{k}} [/mm] und [mm] H_{k}( \wurzel{k} [/mm] | [mm] \bruch{2}{\wurzel{k}}. [/mm] Die Verbindungsstrecke dieser beiden Punkte soll die Seite eines Quadrates bilden.
Ermitteln Sie den Wert von k, für den der Flächeninhalt dieses Quadrates minimal wird!

Hallo zusammen,

ich stecke gerade irgendwie bei dieser Aufgabe fest, da ich keinen wirklichen Ansatz finde, diese Aufgabe zu lösen. Wahrscheinlich ist das ganz einfach, aber anscheinend hab ich ein Brett vorm Kopf.
Zunächst habe ich versucht eine Gerade aufzustellen, die durch die beiden Extrempunkte geht. Dabei bin ich auf [mm] y_{1} [/mm] = [mm] \bruch{\bruch{4}{\wurzel{k}}}{2 \wurzel{k}}* [/mm] (x- [mm] \wurzel{k}) [/mm] + [mm] \bruch{2}{\wurzel{k}} [/mm]
Zunächst habe ich mir erst überlegt, dass ich diese Funktion quadrieren muss um an eine Gleichung für den Flächeninhalt zu kommen, allerdings haben ja die anderen zwei Seiten eine andere Steigung, sie stehen ja orthogonal zu der Geraden [mm] y_{1}. [/mm]
Deshalb habe ich nun noch eine zweite gerade aufgestellt und  zwar [mm] y_{2} [/mm] = - [mm] \bruch{2* \wurzel{k}}{\bruch{4}{\wurzel{k}}}* [/mm] (x - [mm] \wurzel{k}) [/mm] + [mm] \bruch{2}{\wurzel{k}} [/mm]
Nun habe ich versucht eine Gleichung A(x) aufzustellen, um dort schließlich die Extremstellen zu bestimmen. Diese Gleichung habe ich erstellt durch [mm] y_{1}*y_{2} [/mm]
Allerdings glaube ich, dass das falsch ist... zumindest bekomme ich kein Ergebnis raus... Wo liegt mein Denkfehler?
Meine eigene Vermutung ist, dass ich ja die Geraden ermittelt hab und nicht die einzelnen Strecken... allerdings hab ich keine Idee, wie ich die Aufgabe anders angehen bzw. lösen könnte...

Würde mich freuen, wenn sch jemand melden würde!
Danke schonmal im Voraus!

LG Pia

        
Bezug
Schar gebrochen-rationaler Fkt: Antwort
Status: (Antwort) fertig Status 
Datum: 14:55 Fr 12.03.2010
Autor: tobit09

Hallo Pia,

>  Zunächst habe ich mir erst überlegt, dass ich diese
> Funktion quadrieren muss um an eine Gleichung für den
> Flächeninhalt zu kommen,

[verwirrt]

>  Nun habe ich versucht eine Gleichung A(x) aufzustellen, um
> dort schließlich die Extremstellen zu bestimmen. Diese
> Gleichung habe ich erstellt durch [mm]y_{1}*y_{2}[/mm]

[notok]

>  Allerdings glaube ich, dass das falsch ist... zumindest
> bekomme ich kein Ergebnis raus... Wo liegt mein
> Denkfehler?

Schwer zu sagen. Jedenfalls hat die von dir berechnete Funktion nichts mit dem Flächeninhalt des Quadrates zu tun.

>  Meine eigene Vermutung ist, dass ich ja die Geraden
> ermittelt hab und nicht die einzelnen Strecken...

In der Tat hast du nirgendwo eine Streckenlänge ermittelt!

> allerdings hab ich keine Idee, wie ich die Aufgabe anders
> angehen bzw. lösen könnte...

Bestimme zunächst den Flächeninhalt $A(k)$ des Quadrates. Dann kannst du untersuchen, für welches $k>0$ dieser Wert minimal wird. Um $A(k)$ zu bestimmen, benötigst du die Länge der Seiten des Quadrates. Alle vier Seiten haben ja die gleiche Seitenlänge, also kannst du einfach die Länge irgendeiner Seite bestimmen. Nimm naheliegenderweise die Seite, die durch die Strecke von [mm] $T_k$ [/mm] nach [mm] $H_k$ [/mm] gegeben ist. Ihre Länge ist nichts anderes als der Abstand dieser beiden Punke.

Viele Grüße
Tobias

Bezug
                
Bezug
Schar gebrochen-rationaler Fkt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:02 Fr 12.03.2010
Autor: Pia90

Vielen Dank für deine Antwort!

Irgendwie hatte ich anscheinend einen totalen Denkfehler ;)
Ich hab jetzt die Länge des Verschiebungsvektors berechnet und komm dann quadriert auf A(k) = [mm] \bruch{4*(k^2+4)}{k} [/mm] und komme über die Extremstellen schließlich auf k=2, wofür der Flächeninhalt minimal wird. Der Wert klingt in meinen Ohren relativ logisch :)

Bezug
                        
Bezug
Schar gebrochen-rationaler Fkt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:17 Fr 12.03.2010
Autor: tobit09


>  Ich hab jetzt die Länge des Verschiebungsvektors
> berechnet und komm dann quadriert auf A(k) =
> [mm]\bruch{4*(k^2+4)}{k}[/mm] und komme über die Extremstellen
> schließlich auf k=2, wofür der Flächeninhalt minimal
> wird.

[ok]


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de