www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Scheitelpunkt
Scheitelpunkt < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Scheitelpunkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:39 Di 28.04.2009
Autor: Mimic

Hallo,

folgende Frage:

Wie wurde hier der Scheitelpunkt berechnet ?

f(t)= [mm] 0,09t^2-3t [/mm] + 21
  
     [mm] =0,09*(t^2-\left( \bruch{100}{3} \right)t [/mm] + [mm] \left( \bruch{700}{3} \right) [/mm]

     [mm] =0,09*(t^2- [/mm] [mm] \left( \bruch{100}{3} \right) [/mm] t +   [mm] \left( \bruch{2500}{9} \right) [/mm] - [mm] \left( \bruch{2500}{9} \right) [/mm] + [mm] \left( \bruch{2100}{9} \right) [/mm]

    

     =0,09*(t- [mm] \left\bruch{50}{3} \right)^2-4 [/mm]

Zunächst ist ja klar, dass man 0,09 ausklammert und dividiert.
Aber was wurde beim 2.und 3.Schritt gemacht ?

mfg
Mim

        
Bezug
Scheitelpunkt: Antwort
Status: (Antwort) fertig Status 
Datum: 16:57 Di 28.04.2009
Autor: Al-Chwarizmi

Hallo Mimic,


> Wie wurde hier der Scheitelpunkt berechnet ?
>  
> f(t)= [mm]0,09t^2-3t[/mm] + 21
>    
> [mm]=0,09*(t^2-[/mm] [mm]\left( \bruch{100}{3} \right)[/mm] t +  [mm]\left( \bruch{700}{3} \right)[/mm]

Hier fehlt am Schluss eine Klammer.
  

> [mm]=0,09*(t^2-[/mm] [mm]\left( \bruch{100}{3} \right)*t+\left( \bruch{2500}{9} \right)+\left( \bruch{2100}{9} \right)[/mm]     [notok]

Dies sollte eigentlich quadratische Ergänzung sein.
Es fehlt aber die Korrektur durch Subtraktion des
hinzugefügten Terms [mm] \bruch{2500}{9} [/mm] sowie wieder
die Klammer am Schluss.
  

> =0,09*(t- [mm]\left\bruch{50}{3} \right)^2-4[/mm]

Dies ist das (richtige) Schlussergebnis, aus welchem man
die Scheitelpunktskoordinaten
[mm] u=\bruch{50}{3} [/mm] und v=-4 ablesen kann.

>  
> Zunächst ist ja klar, dass man 0,09 ausklammert und
> dividiert.
>  Aber was wurde beim 2.und 3.Schritt gemacht ?


LG     Al-Chw.


Bezug
                
Bezug
Scheitelpunkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:10 Di 28.04.2009
Autor: Mimic

Könntest du mir, dass nicht einmal bitte in den einzelnen Schritten erklären ?

Weil ich verstehe  z.b nicht, wie man auf die [mm] \bruch{2500}{9} [/mm]   kommt und insgesamt den dritten Schritt nicht.

Bezug
                        
Bezug
Scheitelpunkt: quadratische Ergänzung
Status: (Antwort) fertig Status 
Datum: 17:19 Di 28.04.2009
Autor: Loddar

Hallo Mimic!


> Weil ich verstehe  z.b nicht, wie man auf die
> [mm]\bruch{2500}{9}[/mm]   kommt und insgesamt den dritten Schritt nicht.

Nimm das Glied vor dem $t_$ (ohne Quadrat), teile es durch 2 und quadriere das Ergebnis: dies ist die quadratische Ergänzung.

Hier:
[mm] $$\bruch{100}{3} [/mm] \ [mm] \longrightarrow [/mm] \ [mm] \bruch{\bruch{100}{3}}{2} [/mm] \ = \ [mm] \bruch{50}{3} [/mm] \ [mm] \longrightarrow [/mm] \ [mm] \left(\bruch{50}{3}\right)^2 [/mm] \ = \ [mm] \bruch{2500}{9}$$ [/mm]
Dieser Term wird nun addiert und anschließend gleich wieder abgezogen, um die Gleichung nicht zu verändern.

Dann wird auf den vorderen Part die MBbinomische Formel angewandt.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de