www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Scheitelpunktbestimmung
Scheitelpunktbestimmung < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Scheitelpunktbestimmung: Aufgabe quadratische Gleichung
Status: (Frage) beantwortet Status 
Datum: 21:43 Di 20.09.2011
Autor: Eirene

Aufgabe
Bestimme den Scheitelpunkt.

[mm] k(x)=-2+4x-x^2 [/mm]


Hallo,

brauche bitte Hilfe.

also ich dachte mir erst auf die Normalform bringen:
k(x)= [mm] -x^2+4x-2 [/mm]  |*(-1)
= [mm] x^2-4x+2 [/mm]

dann:

k(x)= [mm] (x-2)^2 [/mm] +2

also S(-2/2)
???
irgendwas stimmt nicht... wenn man -2 in die Gleichung einsetzt, dann kommt aber nicht 2 raus...

Wo ist mein Fehler????


Vielen Dank


        
Bezug
Scheitelpunktbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:55 Di 20.09.2011
Autor: MathePower

Hallo Eirene,

> Bestimme den Scheitelpunkt.
>  
> [mm]k(x)=-2+4x-x^2[/mm]
>  

Dieselbe Frage hast Du hier schon einmal gestellt.


> Hallo,
>  
> brauche bitte Hilfe.
>  
> also ich dachte mir erst auf die Normalform bringen:
>  k(x)= [mm]-x^2+4x-2[/mm]  |*(-1)
>  = [mm]x^2-4x+2[/mm]
>  
> dann:
>  
> k(x)= [mm](x-2)^2[/mm] +2
>  


Hier muss es doch lauten:

[mm]\left(x-2\right)^{2}\blue{-}2[/mm]

Da

[mm]x^2-4x+2=x^{2}-4x+4-4+2=\left(x-2\right)^2-4+2[/mm]

Und jetzt noch mit -1 multiplizieren:

[mm]k\left(x\right)=-\left( \ \left(x-2\right)^{2}-2 \ \right)[/mm]


> also S(-2/2)
>  ???
>  irgendwas stimmt nicht... wenn man -2 in die Gleichung
> einsetzt, dann kommt aber nicht 2 raus...
>  
> Wo ist mein Fehler????
>  
>
> Vielen Dank
>  


Gruss
MathePower

Bezug
                
Bezug
Scheitelpunktbestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:48 Di 20.09.2011
Autor: Eirene



danke

was ich aber nicht verstehe...

Sie schreiben: [mm] x^2-4x+2=x^2-4x+4-4+2 [/mm]  wenn man 4-4+2 rechnet dann kommt man auf +2


und warum muss man dann die ganze quadratische Funktion noch mal -1 nehmen?

was kommt nun raus ?
S(-2/2) ???




Bezug
                        
Bezug
Scheitelpunktbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:59 Di 20.09.2011
Autor: Adamantin


>
>
> danke
>  
> was ich aber nicht verstehe...
>  
> Sie schreiben: [mm]x^2-4x+2=x^2-4x+4-4+2[/mm]  wenn man 4-4+2
> rechnet dann kommt man auf +2

richtig, das steht ja auch auf der linken Seite. Es geht aber darum, dass du einen Term [mm] (x-2)^2 [/mm] bekommen möchtest. Also kannst du es dir auf zwei Wegen merken:

Du machst aus [mm] $x^2-4x$ [/mm] ein [mm] $(x-2)^2$, [/mm] dadurch kommt aber ein +4 in den Term [mm] ($a^2-2ab+b^2$). [/mm] Also musst du diese +4 wieder abziehen, sonst hast du 4 zuviel! Demnach am Ende von +2 noch -4 abziehen, das macht -2.

Du kannst auch MathePowers 0-Darstellung benutzen und dein [mm] x^2-4x+2 [/mm] in [mm] x^2-4x+4-4+2 [/mm] nutzen. Jetzt steht direkt die 2. binomische Formel da, also umformen: [mm] x^2-4x+4=(x-2)^2. [/mm] Dann steht noch ein -4+2 am Ende und auch das ergibt -2. So oder so, multipliziere doch einfach aus und schau, ob das, was du als richtig erachtest, auch wirklich richtig ist. Wäre dein [mm] (x-2)^2+2 [/mm] richtig, so multipliziere die Klammer aus und schau, ob es [mm] x^2-4x+2 [/mm] ergibt. Ich glaube nicht ;)

>  
>
> und warum muss man dann die ganze quadratische Funktion
> noch mal -1 nehmen?
>  
> was kommt nun raus ?
>  S(-2/2) ???
>  
>
>  


Bezug
                                
Bezug
Scheitelpunktbestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:08 Di 20.09.2011
Autor: Eirene


ok, das mit der binomischen Formel verstehe ich jetzt, DANKE!!

Nun wenn man von der Scheitelpunktform ausgeht, dann ist S(-2/-2) da [mm] k(x)=(x-2)^2-2 [/mm]

nun wenn ich aber -2 für x einsetze bekomme ich für y nicht -2 ...


Bezug
                                        
Bezug
Scheitelpunktbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:24 Di 20.09.2011
Autor: Foszwoelf

Der Scheitelpunkt liegt bei (2/-2)

Die x-Koordinate wird immer mit vertauschtem vorzeichen abgelesen , das ist so. Muss man sich einfach merken

Bsp .

[mm] (x-3)^2 [/mm] +3    S(3/3)

[mm] (x+5)^2-7 [/mm]     S(-5/-7)


usw.

wenn du 2 als Lösung einsetzt hast du als f(x) Koordinate die -2 raus :-)

Bezug
                                                
Bezug
Scheitelpunktbestimmung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:32 Di 20.09.2011
Autor: Eirene

VIELEN DANK Euch allen für die Antworten!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de