www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Schief-hermitesche Matrix
Schief-hermitesche Matrix < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schief-hermitesche Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:18 Di 29.06.2004
Autor: chrisb

Hallo,

ich bin gerade dabei folgende Aufgabe zu lösen, mir fehlt aber der entscheidene Dreh.

Es sei U unitär mit det(I-iU) ungleich 0. Man zeige, dass die Matrix

A:= (I+iU)(I-iU)^-1

schief-hermitesch ist.


A schief-hermitesch <=> A* = -A
Als erstes habe ich den Ausdruck (I-iU)^-1 auf die andere Seite gebracht. Dann habe ich beide Seiten der Gleichung (I-iU)A = (I+iU) „gesternt“:

(I-iU)*A* = (I+iU)*
ó (I+iU*)A*= (I-iU*)
ó A* = (I-iU*)(I+iU*)^-1

An dieser Stelle komme ich nicht weiter, ich weiß noch nicht mal, ob es was gebracht hat. Kann mir da jemand weiterhelfen?
Entschuldigt, dass ich meine Frage so kurzfristig stelle, aber ich habe dieses Forum erst vorhin gefunden.

Gruß
Christoph

Ich habe diese Frage in keinem weiterem Forum gestellt.



        
Bezug
Schief-hermitesche Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 23:27 Di 29.06.2004
Autor: Julius

Lieber Christoph!

Doch, ich würde wie du mit Gewalt vorgehen:

[mm]((I + iU)(I-iU)^{-1})^{\*} \stackrel{(?)}{=} (-I-iU)(I-iU)^{-1}[/mm]

[mm]\Leftrightarrow \quad (I + iU^{\*})^{-1} (I-iU^{\*}) = (-I-iU)(I-iU)^{-1}[/mm]

[mm]\Leftrightarrow \quad (I+iU^{-1})^{-1} (I-iU^{-1}) = (-I-iU)(I-iU)^{-1}[/mm]

[mm]\Leftrightarrow \quad (I-iU^{-1})(I-iU) = (I+iU^{-1})(-I-iU)[/mm]

[mm]\Leftrightarrow \quad I - iU^{-1} - iU - I = -I - iU^{-1} - iU + I[/mm] [ok]

Liebe Grüße
Julius

Bezug
                
Bezug
Schief-hermitesche Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:33 Mi 30.06.2004
Autor: chrisb

Hallo Julius,

vielen Dank für deine Antwort. Ich bin natürlich nicht darauf gekommen, die beiden Seiten einfach gleichzusetzen. Ich habe aber noch eine Frage zum letzten Schritt. I fällt schließlich weg, ich verstehe noch nicht ganz, warum. -i x -i gibt + (bzw. auf der rechten Seite i x -i) und U x  U^-1 = I .

Gruß
Christoph

Bezug
                        
Bezug
Schief-hermitesche Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 11:40 Mi 30.06.2004
Autor: Julius

Hallo Christoph!

> -i x
> -i gibt + (bzw. auf der rechten Seite i x -i) und U x  U^-1
> = I .

Richtig, es gilt:

[mm] $(-iU^{-1}) \cdot [/mm] (-iU) = -I$

und

[mm] $(iU^{-1}) \cdot [/mm] (-iU) = I$.

Aber so habe ich doch auch gerechnet.

Wir haben ja auf beiden Seiten zwei $I$'s, hast du das übersehen?

Liebe Grüße
Julius  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de