www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Schittkreis zweier Kugeln
Schittkreis zweier Kugeln < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schittkreis zweier Kugeln: Schittkreis zweier Kugeln2
Status: (Frage) beantwortet Status 
Datum: 22:26 Do 02.03.2006
Autor: svenchen

Abend zusammen!

Ich habe zwei Kugeln, die sich schneiden. (kein Sonderfall ).

Könnt ihr mir das generelle Vorgehen zur Bestimmung des Schnittkreises (Radius und Mittelpunkt) erklären ? (nicht der Weg: erst 2 gleichungen gleichsetzen und dann die Ebene die entsteht mit einer Kugel schneiden. bin an der geometrischen Lösung interessiert, da kann man wohl irgendwie zweimal den Phytagoras aufstellen)...

danke euch!

        
Bezug
Schittkreis zweier Kugeln: Antwort
Status: (Antwort) fertig Status 
Datum: 01:03 Fr 03.03.2006
Autor: felixf


> Abend zusammen!
>  
> Ich habe zwei Kugeln, die sich schneiden. (kein Sonderfall
> ).
>  
> Könnt ihr mir das generelle Vorgehen zur Bestimmung des
> Schnittkreises (Radius und Mittelpunkt) erklären ? (nicht
> der Weg: erst 2 gleichungen gleichsetzen und dann die Ebene
> die entsteht mit einer Kugel schneiden. bin an der
> geometrischen Lösung interessiert, da kann man wohl
> irgendwie zweimal den Phytagoras aufstellen)...

Mal schaun ob das hier das ist was du wissen willst :-)

Nun, geometrisch kannst du das ganze auf den Schnitt zweier Kreise zurueckfuehren: Du schaust 'passend' von der Seite drauf. Dann hast du (etwa im Nullpunkt und im Punkt $(x, 0)$) zwei Kreise mit Radien [mm] $r_1$ [/mm] und [mm] $r_2$ [/mm] und Abstand $x$. Wenn du die beiden Schnittpunkte hast, bekommst du sowohl den Radius des Schnittkreises als auch den Schittpunkt der Kreisebene mit der Verbindungsgeraden zwischen den Mittelpunkten der Kugeln.

Das zweidimensionale Problem ist im Prinzip das gleiche wie: Gegeben sind die drei Seitenlaengen eines Dreiecks, finde die Hoehe (von einer vorgegebenen der drei Seiten aus als Grundseite gesehen). Jetzt kannst du mit (dem zweidimensionalen) Phytagoras eine Gleichung aufstellen, die du loesen kannst.

Alternativ kannst du das auch als Minimierungsproblem betrachten: fuer einen Punkt $(t, 0)$ auf der Verbindungsgerade $(0, 0)$ und $(x, 0)$, also $0 [mm] \le [/mm] t [mm] \le [/mm] x$, betrachte die Funktion $f(t) := [mm] |\sqrt{r_1^2 - t^2} [/mm] - [mm] \sqrt{r_2^2 - (1-t)^2}|$ [/mm] (oder besser, deren Quadrat), welche die Abweichung der Hoehen angibt: ist $f(t) = 0$, so ist $(t, 0)$ der Punkt, an dem die Schnittgerade (durch die beiden Schnittpunkte) die $x$-Achse beruehrt.

Hilft dir das?

LG Felix



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de