www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Schmidt'sches Orthonormieren
Schmidt'sches Orthonormieren < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schmidt'sches Orthonormieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:47 Mo 09.02.2009
Autor: kuemmelsche

Hallo zusammen,

den Beweis zum Verfahren hab ich verstanden.

Ich habe ein Problem damit, mir Vorzustellen, was genau dabei passiert.

Das normieren ist kein Problem, aber das Orthogonalisieren.

Es heißt ja nach Induktion [mm] b_{k+1}=a_{k+1}-\summe_{i=1}^{k}e_i, [/mm] mit [mm] e_i [/mm] bereits orthonormierte Vektoren, [mm] b_{k+1} [/mm] der nächste orthogonalisierte Vektor und [mm] a_{k+1} [/mm] der zu orthonormierende Vektor.

Ist [mm] e_i [/mm] die Standartbasis, dann verstehe ich, das jeweils vom i-ten Eintrag in [mm] a_{k+1} [/mm] jeweis [mm] e_i [/mm] abgezogen wird.

Geometrisch soll das bedeuten, dass das Lot gefällt wird, aber iwie kann ich mir nicht so recht vorstellen, was das Skalarprodukt in diesem Fall genau macht.

Hat jemand für mich vllt eine schöne Erklärung? Es sind immer soche Beweise, inden am Anfang schon die Aussage steht, und im Beweis nur gezeigt wird, dass das auch stimmt, bei denen mich die eigentliche Idee dahinter sehr interessiert. Vllt weiß jemand ja, wie man auf diese Formel kommt, und nicht als Begründung hat: "weils eben geht".
Danke schonmal!

lg Kai

        
Bezug
Schmidt'sches Orthonormieren: Antwort
Status: (Antwort) fertig Status 
Datum: 00:28 Di 10.02.2009
Autor: Marcel

Hallo,

> Hallo zusammen,
>  
> den Beweis zum Verfahren hab ich verstanden.
>  
> Ich habe ein Problem damit, mir Vorzustellen, was genau
> dabei passiert.
>  
> Das normieren ist kein Problem, aber das Orthogonalisieren.
>
> Es heißt ja nach Induktion
> [mm]b_{k+1}=a_{k+1}-\summe_{i=1}^{k}e_i,[/mm] mit [mm]e_i[/mm]
> bereits orthonormierte Vektoren, [mm]b_{k+1}[/mm] der nächste
> orthogonalisierte Vektor und [mm]a_{k+1}[/mm] der zu
> orthonormierende Vektor.
>  
> Ist [mm]e_i[/mm] die Standartbasis, dann verstehe ich, das jeweils
> vom i-ten Eintrag in [mm]a_{k+1}[/mm] jeweis [mm]e_i[/mm]
> abgezogen wird.
>  
> Geometrisch soll das bedeuten, dass das Lot gefällt wird,
> aber iwie kann ich mir nicht so recht vorstellen, was das
> Skalarprodukt in diesem Fall genau macht.
>  
> Hat jemand für mich vllt eine schöne Erklärung? Es sind
> immer soche Beweise, inden am Anfang schon die Aussage
> steht, und im Beweis nur gezeigt wird, dass das auch
> stimmt, bei denen mich die eigentliche Idee dahinter sehr
> interessiert. Vllt weiß jemand ja, wie man auf diese Formel
> kommt, und nicht als Begründung hat: "weils eben geht".
> Danke schonmal!

naja, ich habe jetzt einfach mal nach ggf. interessanten Links gesucht:
[mm] $\bullet$[/mm]  []Link1

[mm] $\bullet$[/mm]  []Link2

schienen mir ziemlich passend, oder wenigstens etwas hilfreich, bzgl. Deiner Frage zu sein.

P.S.:
Es gibt hierbei zwei Stellen, wo das Skalarprodukt eine Rolle spielt:
1.) Die Norm wird vom Skalarprodukt induziert (erzeugt)
2.) Mithilfe des Skalarproduktes wird in einem mit einem Skalarprodukt versehenen Vektorraum überhaupt von erst von "lotrecht" bzw. orthogonal gesprochen

Das sind jedenfalls zwei technische Dinge, wo es eine Rolle spielt. Und eine weitere technische Sache ist eben, dass bei dieser Vorgehensweise im Wesentlichen die Eigenschaften eines Skalarproduktes ausgenutzt werden können. Aber das ist auch wieder eher eine technische Sache...

Gruß,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de