Schnitt, Vereinigung,... < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 20:57 Di 27.10.2009 | Autor: | Ersty |
Aufgabe | Beweisen Sie die folgenden beiden Aussagen [mm] \forall [/mm] Mengen A,B,C.
(i) C [mm] \backslash [/mm] (A [mm] \cap [/mm] B) = (C [mm] \backslash [/mm] A) [mm] \cup [/mm] (C [mm] \backslash [/mm] B);
(ii) C [mm] \backslash [/mm] (A [mm] \cup [/mm] B) = (C [mm] \backslash [/mm] A) [mm] \cap [/mm] (C [mm] \backslash [/mm] B) |
Hi hier erst einmal die Definitionen:
Definition 1: A [mm] \cap [/mm] B := {x | (x [mm] \in [/mm] A) [mm] \wedge [/mm] (x [mm] \in [/mm] B)}
Definition 2: A [mm] \cup [/mm] B := {x | (x [mm] \in [/mm] A) [mm] \vee [/mm] (x [mm] \in [/mm] B)}
Definition 3: A [mm] \backslash [/mm] B := {x | (x [mm] \in [/mm] A) [mm] \wedge [/mm] (x [mm] \not\in [/mm] B)}
(i)
z.Z: C [mm] \backslash [/mm] (A [mm] \cap [/mm] B) = (C [mm] \backslash [/mm] A) [mm] \cup [/mm] (C [mm] \backslash [/mm] B)
x [mm] \in [/mm] C [mm] \backslash [/mm] (A [mm] \cap [/mm] B) [mm] \gdw \nach(3) [/mm] (x [mm] \in [/mm] C) [mm] \wedge [/mm] [x [mm] \not\in [/mm] (A [mm] \cap [/mm] B)]
[mm] \gdw(1) [/mm] (x [mm] \in [/mm] C) [mm] \wedge [/mm] [((x [mm] \not\in [/mm] A) [mm] \wedge [/mm] (x [mm] \in [/mm] B)) [mm] \vee [/mm] ((x [mm] \in [/mm] A) [mm] \wedge [/mm] (x [mm] \not\in [/mm] B))]
[mm] \gdw(Distributivgesetz) [/mm] [(x [mm] \in [/mm] C) [mm] \wedge [/mm] ((x [mm] \not\in [/mm] A) [mm] \wedge [/mm] (x [mm] \in [/mm] B))] [mm] \wedge [/mm] [(x [mm] \in [/mm] C) [mm] \wedge [/mm] ((x [mm] \in [/mm] A) [mm] \wedge [/mm] (x [mm] \not\in [/mm] B)]
[mm] \gdw [/mm] [x [mm] \in [/mm] (C [mm] \backslash [/mm] A)] [mm] \wedge [/mm] [x [mm] \in [/mm] (C [mm] \backslash [/mm] B)]
[mm] \gdw(2) [/mm] (C [mm] \backslash [/mm] A) [mm] \cup [/mm] (C [mm] \backslash [/mm] B)
JETZT MÜSSTE DIESER BEWEIS richtig sein!?!
(ii)
schreib ich später hier rein
|
|
|
|
Tach,
Hier liegt der Fehler:
[mm] $$x\in C\wedge x\not\in\left(A\cap B\right)\gdw x\in C\wedge\left[x\in A\wedge x\in B\right]$$
[/mm]
muss heißen
[mm] $$x\in C\wedge x\not\in\left(A\cap B\right)\gdw x\in C\wedge\left[\left(x\in A\wedge x\not\in B\right)\vee \left(x\in B\wedge x\not\in A\right)\right]$$
[/mm]
Hier musst du mit dem ausschließenden Oder handeln; das habe ich aber umgangen, indem ich den Ausdruck in der eckigen Klammer etwas ausführlicher geschrieben habe. x liegt in C und ENTWEDER in A ODER in B. Wenn du jetzt noch das Distributivgesetz für Mengen nutzt, kommst du auf die rechte Seite.
Grüße, Stefan.
|
|
|
|
|
Status: |
(Frage) überfällig | Datum: | 16:47 Do 29.10.2009 | Autor: | Ersty |
Hier komme ich nicht weiter
z.Z. C [mm] \backslash [/mm] (A [mm] \cup [/mm] B) = (C [mm] \backslash [/mm] A) [mm] \cap [/mm] (C [mm] \backslash [/mm] B)
x [mm] \in [/mm] C [mm] \backslash [/mm] (A [mm] \cup [/mm] B) [mm] \gdw \nach(3) [/mm] (x [mm] \in [/mm] C) [mm] \wedge [/mm] [x [mm] \not\in [/mm] (A [mm] \cup [/mm] B)]
[mm] \gdw(2) [/mm] (x [mm] \in [/mm] C) [mm] \wedge [/mm] [(x [mm] \not\in [/mm] A) [mm] \vee [/mm] (x [mm] \not\in [/mm] B)]
und genau hier habe ich mein Problem:
Die formale Definition von "Vereinigung" sieht ein "Oder" vor, aber letztendlich stimmt es nicht, wenn ich es hier als "oder" hinschreiben würde.
Denn wenn x nicht in der Vereiniung von A und B ist, ist es gar nicht in A und in B. Ist das richtig?
Hier mein neuer Vorschlag:
z.Z. C [mm] \backslash [/mm] (A [mm] \cup [/mm] B) = (C [mm] \backslash [/mm] A) [mm] \cap [/mm] (C [mm] \backslash [/mm] B)
x [mm] \in [/mm] C [mm] \backslash [/mm] (A [mm] \cup [/mm] B) [mm] \gdw \nach(3) [/mm] (x [mm] \in [/mm] C) [mm] \wedge [/mm] [x [mm] \not\in [/mm] (A [mm] \cup [/mm] B)]
[mm] \gdw [/mm] (x [mm] \in [/mm] C) [mm] \wedge [/mm] [(x [mm] \not\in [/mm] A) [mm] \wedge [/mm] (x [mm] \not\in [/mm] B)]
[mm] \gdw(Distributivgesetz) [/mm] [(x [mm] \in [/mm] C) [mm] \wedge [/mm] (x [mm] \not\in [/mm] A)] [mm] \wedge [/mm] [(x [mm] \in [/mm] C) [mm] \wedge [/mm] (x [mm] \not\in [/mm] B)]
[mm] \gdw(1) [/mm] [x [mm] \in [/mm] (C [mm] \backslash [/mm] A)] [mm] \cap [/mm] [x [mm] \in [/mm] (C [mm] \backslash [/mm] B)]
q.e.d
Natürlich kann ich es auch Negation in der ersten Zeile nach z.Z. machen, aber ich möchte es auf meine Art machen, so logisch nachvollziehbar, wie die korrigierte Version in (i).
Ist mein Beweis formal so richtig?
Ich habe diese Frage in keinem anderen Forum gestellt!
Vielen Dank und euch noch einen schönen Tag!
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:20 Sa 31.10.2009 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|
|
Hallo Ersty,
dein Beweis ist okay und formal richtig.
Grüße,
Stefan
|
|
|
|