www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - Schnittgerade
Schnittgerade < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schnittgerade: Hilfe und Tipp
Status: (Frage) beantwortet Status 
Datum: 17:56 So 25.04.2021
Autor: wolfgangmax

Aufgabe
<br>2 Ebenen schneiden sich, die eine (E1)ist in Parameterform, die zweite (E2) in Koordinatenform dargestellt. Notwenigerweise müssen beide Ebenen die gleiche Form haben. 
Daher will ich folgende Ebene umformen in eine Ebene in Parameterform
E2: 2x2 + x3 = 11
Normalerweise ist die Umformung nicht schwer, aber (und das ist mein Problem) x1 fehlt.
 


<br>Angenommen x1 würde existieren, dann sähe die Umformung so aus:
x1 + 2x2 + x3 = 11

umgestellt nach x1:
x1 = 11 - 2x2 - x3     für x2 setze ich s und für x3 setze ich t, dann:
x1 = 11 - 2s - t
x2 =  0    s   0
x3 =  0    0   t

Die Ebene E2 hätte dann die Gleichung: x = (11,0,0) + s(-2,1,0) + t(-1,0,1)

Diese Ebenengleichung kann nicht richtig sein, da ja x1 gar nicht in der Bestandsgleichung existiert.

Wie sieht die Lösung meines Problems aus? Für Hilfe wäre ich sehr dankbar
Mit freundliuchen Grüßen
wolfgangmax
 

        
Bezug
Schnittgerade: Antwort
Status: (Antwort) fertig Status 
Datum: 18:34 So 25.04.2021
Autor: statler


> <br>2 Ebenen schneiden sich, die eine (E1)ist in
> Parameterform, die zweite (E2) in Koordinatenform
> dargestellt. Notwenigerweise müssen beide Ebenen die
> gleiche Form haben. 
>  Daher will ich folgende Ebene umformen in eine Ebene in
> Parameterform
>  E2: 2x2 + x3 = 11
>  Normalerweise ist die Umformung nicht schwer, aber (und
> das ist mein Problem) x1 fehlt.
>   

Hallo,

Eine mögliche Lösung ist z. B., daß du dir 3 Punkte in dieser Ebene suchst, die nicht auf einer Geraden liegen. Da x1 fehlt, hast du bei der x1-Koordinate völlig freie Hand. P(0|5|1), Q(1|5|1) und R(0|0|11) tun es. Damit kannst du jetzt einen Stütz- und zwei Spannvektoren berechnen.

Weil in der Koordinatenform x1 fehlt, liegt die Ebene parallel zur x1-Achse. Die beiden Ebenendarstellungn müssen übrigens nicht notwendigerweise die gleiche Form haben.

Gruß aus HH
Dieter

Bezug
        
Bezug
Schnittgerade: Antwort
Status: (Antwort) fertig Status 
Datum: 20:20 So 25.04.2021
Autor: HJKweseleit


> <br>2 Ebenen schneiden sich, die eine (E1)ist in
> Parameterform, die zweite (E2) in Koordinatenform
> dargestellt. Notwenigerweise müssen beide Ebenen die
> gleiche Form haben. 
>  Daher will ich folgende Ebene umformen in eine Ebene in
> Parameterform
>  E2: 2x2 + x3 = 11
>  Normalerweise ist die Umformung nicht schwer, aber (und
> das ist mein Problem) x1 fehlt.
>   
>  
> <br>Angenommen x1 würde existieren, dann sähe die
> Umformung so aus:
>  x1 + 2x2 + x3 = 11

Genau so sieht sie auch aus, bis auf einen Fehler: Es heißt

[mm] \red{0}*x1 [/mm] + 2x2 + x3 = 11


>  
> umgestellt nach x1:

Das wird dann nichts, aber

[mm] x_3=11-2x_2 [/mm]
[mm] x_1=beliebig, [/mm] und damit

[mm] \vektor{x_1 \\ x_2 \\ x_3}=\vektor{x_1 \\ x_2 \\11-2x_2}=\vektor{0 \\ 0 \\ 11}+x_1\vektor{1 \\ 0 \\ 0}+x_2\vektor{0 \\ 1 \\ -2} [/mm]


Aber: Um die Schnittgerade zweier Ebenen zu bestimmen, ist das Beste, das dir passieren kann, wenn eine in Parameter- und die andere in Koordinatenform angegeben ist.

Nehmen wir mal

[mm] E_1: \vec{x}= \vektor{1 \\ -1 \\ 3}+s\vektor{1 \\ 4 \\ 3}+t\vektor{1 \\ 1 \\ 3}=(ZUSAMMENFASSEN!)\vektor{1+s+t \\ -1+4s+t \\ 3+3s+3t} [/mm]

und
[mm] E_2: x_1 [/mm] + [mm] 2x_2 [/mm] + [mm] x_3 [/mm] = 11

Jetzt setzt du einfach die Koordinaten von [mm] E_1 [/mm] in [mm] E_2 [/mm] ein, also

[mm] x_1=1+s+t [/mm]
[mm] x_2=-1+4s+t [/mm]
[mm] x_3=3+3s+3t [/mm]

und damit (1+s+t)+2*(-1+4s+t)+(3+3s+3t)=2+12s+6t=11

Daraus folgt 6t = 9 - 12s, also t=1,5-2s, und das setzt du jetzt in die Parameterform ein:

[mm] \vektor{1+s+t \\ -1+4s+t \\ 3+3s+3t}=\vektor{1+s+1,5-2s \\ -1+4s+1,5-2s \\ 3+3s+3(1,5-2s)}= [/mm]
[mm] \vektor{2,5 \\ 0,5 \\ 7,5}+s\vektor{-1 \\ 2 \\ -3}, [/mm] und das ist die Gleichung der Schnittgerade.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de