www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - Schnittgerade
Schnittgerade < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schnittgerade: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:26 Mo 02.06.2008
Autor: defjam123

Aufgabe
Zeichnen Sie die Eben [mm] E_{1} [/mm] und [mm] E_{2} [/mm] und ihre Schnittgerade in ein Koordinatensystem

a) [mm] E_{1}: 4=x_{1}+x_{2}+x_{3} [/mm]
   [mm] E_{2}: 30=15x_{1}+10x_{2}+6x_{3} [/mm]

Hey Leute,

hab erstemal die Koordiantengleichungen in eine Parametergleichung umgewandelt.

Für [mm] E_{1} [/mm] hab ich nach [mm] x_{1} [/mm] aufgelöst: [mm] \vec{x}=\vektor{4 \\ 0 \\ 0}+r*\vektor{1\\ -1 \\ 0}+s*\vektor{1\\ 0 \\ -1} [/mm]

Für [mm] E_{2} [/mm] hab ich nach [mm] x_{2} [/mm] aufgelöst: [mm] \vec{x}=\vektor{0 \\ 3 \\ 0}+r*\vektor{1\\ -1,5 \\ 0}+s*\vektor{0\\ -0,6 \\ 2} [/mm]

Nun muss ich zeichnen, weiß nicht wie?
Wie erechne ich die Schnittgerade?

Gruss

        
Bezug
Schnittgerade: Antwort
Status: (Antwort) fertig Status 
Datum: 22:47 Mo 02.06.2008
Autor: M.Rex

Hallo

Der eleganteste Weg ist, die Parametergleichung der einen Ebene in die andere Koordinatenform einzusetzen.

Also hier:

[mm] E_{1}:\vec{x}=\vektor{4\\0\\0}+r\cdot{}\vektor{1\\-1\\0}+s\cdot{}\vektor{1\\0\\1} [/mm]

[mm] \gdw x_{1}=4+r+s, x_{2}=-r, x_{3}=s [/mm]

Das ganze mal in [mm] E_{2}: 15x_{1}+10x_{2}+6x_{3}=30 [/mm] einsetzen:

Also:
$15(4+r+s)-10r+6s=30$
[mm] \gdw [/mm] $-9r+7s=-30$
[mm] \gdw s=\bruch{9}{7}r-\bruch{30}{7} [/mm]

Und das setze mal in [mm] E_{1} [/mm] ein.

Also:

[mm] \vektor{4\\0\\0}+r\cdot{}\vektor{1\\-1\\0}+\left(\bruch{9}{7}r-\bruch{30}{7}\right)\cdot{}\vektor{1\\0\\1} [/mm]
[mm] =\vektor{4\\0\\0}-\bruch{30}{7}\cdot{}\vektor{1\\0\\1}+r\cdot{}\vektor{1\\-1\\0}+\bruch{9}{7}r\cdot{}\vektor{1\\0\\1} [/mm]
[mm] =\vektor{4-\bruch{30}{7}\\0\\0-\bruch{30}{7}}+r*\vektor{1+\bruch{9}{7}\\-1+0\\0+\bruch{9}{7}} [/mm]
[mm] =\vektor{-\bruch{2}{7}\\0\\-\bruch{30}{7}}+r*\vektor{\bruch{16}{7}\\-1\\\bruch{9}{7}} [/mm]

Und das ist dann die gesuchte Schnittgerade.

Marius

Bezug
                
Bezug
Schnittgerade: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:22 Mo 02.06.2008
Autor: defjam123

Danke dir!

hast mir sehr geholfen. Versuch jetzt grad die Ebenen und die Schnittgerade zu zeichnen, weiß aber nicht wie man das einzeichnet.

Gruss

Bezug
                        
Bezug
Schnittgerade: Ebenen einzeichnen
Status: (Antwort) fertig Status 
Datum: 01:42 Di 03.06.2008
Autor: ardik

Hallo defjam123,

meines Erachtens lassen sich die Ebenen am Besten zeichnen, wenn man die Ebenengleichungen zunächst in die Achsenabschnittsform

[mm] $1=\bruch{x_1}{A}+\bruch{x_2}{B}+\bruch{x_3}{C}$ [/mm]

umwandelt. $A, B, C$ geben dann die Schnittpunkte mit den jeweiligen Koordinatenachsen an. Wenn man dann diese Punkte verbindet und diese Strecken (am Besten dünner oder gestrichelt) verlängert, hat man die Schnittgeraden der Ebene mit den Koordinatenebenen (Spurgeraden). Man bekommt so einen ganz guten Eindruck, wie die Ebene in der "Ecke" der K'ebenen liegt. Das dünnere Verlängern hilft dem Auge, das sind die Abschnitte der Spurgeraden, die aus Sicht des Betrachters hinter den K'ebenen liegen.

$ [mm] E_{1}: 4=x_{1}+x_{2}+x_{3} [/mm] $
$ [mm] E_{1}: 1=\bruch{1}{4}x_{1}+\bruch{1}{4}x_{2}+\bruch{1}{4}x_{3} [/mm] $
Die Achsen werden also jeweils bei 4 geschnitten

[m] \begin{array}{rrl}E_{2}:& 30&=15x_{1}+10x_{2}+6x_{3} \\ E_{2}:& 1&=\bruch{1}{2}x_{1}+\bruch{1}{3}x_{2}+\bruch{1}{5}x_{3}\end{array} [/m]
Die Schnittpunkte sind also: $A(2;0;0)\ B(0;3;0)\ C(0;0;5)$

Die Schnittgerade würde ich ähnlich einzeichnen.
Auf jeder K'ebene ist der Schnittpunkt der beiden Spurgeraden von [mm] $E_1$ [/mm] und [mm] $E_2$ [/mm] natürlich auch der Schnittpunkt der Schnittgerade mit dieser K'ebene.
Wenn man diese drei Punkte verbindet, erhält man die Schnittgerade. Auch hier ist es ggf. anschaulich, den "sichtbaren" Teil etwas stärker darzustellen.

Schöne Grüße
ardik

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de