www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Schnittmenge
Schnittmenge < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schnittmenge: Beweis
Status: (Frage) beantwortet Status 
Datum: 20:19 Mi 16.10.2013
Autor: EGF

Aufgabe
Seien M, N Mengen und f: M -> N eine Abbildung. Weiter seien A und B Teilmengen von M und C und D Teilmengen von N.
Beweisen oder widerlegen Sie (durch ein Gegenbeispiel) folgende Aussagen:
a) f(A [mm] \cap [/mm] B) = f(A) [mm] \cap [/mm] f(B)
b) [mm] f^{-1}(C \cap [/mm] D) = [mm] f^{-1} [/mm] (C) [mm] \cap f^{-1} [/mm] (D)

Guten Abend =)
Folgende Aufgabe hat mein Freund heute aus seiner Vorlesung mitgebracht. Und irgendwie stehen wir beide auf dem Schlauch..

bei a haben wir bisher:

Zu zeigen:

[mm] \forall [/mm] y [mm] \in [/mm] N: (y [mm] \in [/mm]  f(A [mm] \cap [/mm] B) [mm] \gdw [/mm] y [mm] \in [/mm] f(A) [mm] \cap [/mm] f(B))
Es gelte:  (y [mm] \in [/mm]  f(A [mm] \cap [/mm] B)
per Definition existiert dann ein x [mm] \in [/mm]  A [mm] \cap [/mm] B : f(x) = y
[mm] \gdw (\exists [/mm] x [mm] \in [/mm] A : f(x) = y)  und [mm] (\exists [/mm] x [mm] \in [/mm] B : f(x) = y)
[mm] \gdw [/mm] y = f(A)  und y= f(B) per Definition folgt dann:
y [mm] \in [/mm] f(A) [mm] \cap [/mm] f(B)

Ist das so korrekt? Wenn ja.. kann uns bitte jemand bei b helfen?
Da sind ja Urbilder gemeint oder? Geht das dann nicht genauso?

Danke im voraus!



Wie immer steht die Frage nur hier im Forum ;)

        
Bezug
Schnittmenge: Antwort
Status: (Antwort) fertig Status 
Datum: 09:22 Do 17.10.2013
Autor: hippias


> Seien M, N Mengen und f: M -> N eine Abbildung. Weiter
> seien A und B Teilmengen von M und C und D Teilmengen von
> N.
>  Beweisen oder widerlegen Sie (durch ein Gegenbeispiel)
> folgende Aussagen:
>  a) f(A [mm]\cap[/mm] B) = f(A) [mm]\cap[/mm] f(B)
>  b) [mm]f^{-1}(C \cap[/mm] D) = [mm]f^{-1}[/mm] (C) [mm]\cap f^{-1}[/mm] (D)
>  Guten Abend =)
>  Folgende Aufgabe hat mein Freund heute aus seiner
> Vorlesung mitgebracht. Und irgendwie stehen wir beide auf
> dem Schlauch..
>  
> bei a haben wir bisher:
>  
> Zu zeigen:
>
> [mm]\forall[/mm] y [mm]\in[/mm] N: (y [mm]\in[/mm]  f(A [mm]\cap[/mm] B) [mm]\gdw[/mm] y [mm]\in[/mm] f(A) [mm]\cap[/mm]
> f(B))
>  Es gelte:  (y [mm]\in[/mm]  f(A [mm]\cap[/mm] B)
>  per Definition existiert dann ein x [mm]\in[/mm]  A [mm]\cap[/mm] B : f(x) =
> y
>  [mm]\gdw (\exists[/mm] x [mm]\in[/mm] A : f(x) = y)  und [mm] > (\exists[/mm] x [mm]\in[/mm] B :

Dieses [mm] $\iff$ [/mm] ist klaerungsbeduerftig: Denn links hast Du ein $x$, das in $A$ und $B$ liegt, waehrend Du rechts ein $x$ aus $A$ hast und ein moeglicherweise verschiedenes $x'$ aus $B$. Also die [mm] $\Rightarrow$ [/mm] Richtung ist klar, aber [mm] $\Leftarrow$ [/mm] nicht.

> f(x) = y)
>  [mm]\gdw[/mm] y = f(A)  und y= f(B) per Definition folgt dann:
>  y [mm]\in[/mm] f(A) [mm]\cap[/mm] f(B)
>  
> Ist das so korrekt? Wenn ja.. kann uns bitte jemand bei b
> helfen?
>  Da sind ja Urbilder gemeint oder?

Ja.

> Geht das dann nicht
> genauso?

Geht so aehnlich.

>  
> Danke im voraus!
>  
>
>
> Wie immer steht die Frage nur hier im Forum ;)


Bezug
        
Bezug
Schnittmenge: Antwort
Status: (Antwort) fertig Status 
Datum: 03:40 Fr 18.10.2013
Autor: tobit09

Hallo EGF!


> Seien M, N Mengen und f: M -> N eine Abbildung. Weiter
> seien A und B Teilmengen von M und C und D Teilmengen von
> N.
>  Beweisen oder widerlegen Sie (durch ein Gegenbeispiel)
> folgende Aussagen:
>  a) f(A [mm]\cap[/mm] B) = f(A) [mm]\cap[/mm] f(B)
>  b) [mm]f^{-1}(C \cap[/mm] D) = [mm]f^{-1}[/mm] (C) [mm]\cap f^{-1}[/mm] (D)


> bei a haben wir bisher:
>  
> Zu zeigen:
>
> [mm]\forall[/mm] y [mm]\in[/mm] N: (y [mm]\in[/mm]  f(A [mm]\cap[/mm] B) [mm]\gdw[/mm] y [mm]\in[/mm] f(A) [mm]\cap[/mm]
> f(B))

Das wird dir nicht gelingen, denn es stimmt im Allgemeinen nicht.

>  Es gelte:  (y [mm]\in[/mm]  f(A [mm]\cap[/mm] B)
>  per Definition existiert dann ein x [mm]\in[/mm]  A [mm]\cap[/mm] B : f(x) =
> y
>  [mm]\gdw (\exists[/mm] x [mm]\in[/mm] A : f(x) = y)  und [mm](\exists[/mm] x [mm]\in[/mm] B :
> f(x) = y)

Hier geht es schief. Die Implikation [mm] $\Leftarrow$ [/mm] ist nicht nur klärungsbedürftig, sondern im Allgemeinen falsch.

>  [mm]\gdw[/mm] y = f(A)  und y= f(B)

[mm] $y\in [/mm] f(A)$ und [mm] $y\in [/mm] f(B)$ meinst du.

> per Definition folgt dann:
>  y [mm]\in[/mm] f(A) [mm]\cap[/mm] f(B)

Beachte, dass du für alle Objekte $y$ die Äquivalenz

     [mm] $y\in f(A\cap B)\iff y\in f(A)\cap [/mm] f(B)$

zeigen müsstest (wenn das denn zuträfe).
Dazu würden ZWEI Richtungen gehören.
Du hast nur die Richtung [mm] $\Rightarrow$ [/mm] formuliert.


> kann uns bitte jemand bei b
> helfen?
>  Da sind ja Urbilder gemeint oder?

Ja.

> Geht das dann nicht
> genauso?

Ich würde nicht sagen, dass das "genauso" geht, auch wenn die Grundvorgehensweise die gleiche ist:
Zeige, dass für alle Objekte $x$ die Aussagen [mm] $x\in f^{-1}(C\cap [/mm] D)$ und [mm] $x\in f^{-1}(C)\cap f^{-1}(D)$ [/mm] äquivalent sind.


Viele Grüße
Tobias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de