www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Schnittp. im Dreieck
Schnittp. im Dreieck < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schnittp. im Dreieck: Schnittp. d. Mittelsenkrechten
Status: (Frage) beantwortet Status 
Datum: 00:50 So 26.02.2006
Autor: Weingeist

Aufgabe
Gegen ist
A (-1/-2)
B (4/-1)
C(1,5/3)

Bestimmen Sie die Schnittpunkte aller Mittelsenkrechten.

Ich hoffe Ihr könnt mir einen Lösungsansatz geben.
Als  Gleichung für die Mittelsenkrechten habe ich folgendes ermittelt:

[mm] m_c [/mm] : y= -5*x+6
[mm] m_b: [/mm] y= - [mm] \bruch{1}{2} [/mm] * x + [mm] \bruch{5}{8} [/mm]
[mm] m_a: [/mm] y= [mm] \bruch{5}{8} [/mm] * x + [mm] \bruch{23}{32} [/mm]

Vielen Dank.

Elke

        
Bezug
Schnittp. im Dreieck: Antwort
Status: (Antwort) fertig Status 
Datum: 01:09 So 26.02.2006
Autor: Bastiane

Hallo Elke!

> Gegen ist
> A (-1/-2)
> B (4/-1)
> C(1,5/3)
>  
> Bestimmen Sie die Schnittpunkte aller Mittelsenkrechten.
>  Ich hoffe Ihr könnt mir einen Lösungsansatz geben.
> Als  Gleichung für die Mittelsenkrechten habe ich folgendes
> ermittelt:
>  
> [mm]m_c[/mm] : y= -5*x+6
> [mm]m_b:[/mm] y= - [mm]\bruch{1}{2}[/mm] * x + [mm]\bruch{5}{8}[/mm]
>  [mm]m_a:[/mm] y= [mm]\bruch{5}{8}[/mm] * x + [mm]\bruch{23}{32}[/mm]

Ich hab das jetzt nicht nachgerechnet, aber wenn das stimmt, dann musst du für die Schnittpunkte (oder schneiden sie sich sogar alle in einem Punkt?) einfach nur je zwei Gleichungen gleichsetzen und dann nach x und y auflösen.

Viele Grüße
Bastiane
[cap]


Bezug
        
Bezug
Schnittp. im Dreieck: Antwort
Status: (Antwort) fertig Status 
Datum: 10:19 So 26.02.2006
Autor: riwe

deine letzte gleichung stimmt nicht: [mm]y =\frac{5}{8}x-\frac{23}{32}[/mm]
und der schnittpunkt der 3 geraden ist der umkreismittelpunkt des dreiecks [mm] U(\frac{43}{36}/\frac{1}{36}). [/mm]
werner

Bezug
        
Bezug
Schnittp. im Dreieck: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:37 So 26.02.2006
Autor: Weingeist

Aufgabe
Berechnung der Schnittpunkte aller Mittelsenkrechte - Gleichsetzungsverfahren

Vielen Dank für Eure Hilfe und für den Hinweis zum Fehler.

Also ich habe es jetzt mal mit dem Gleichsetzen versucht, komme da aber irgendwie nicht klar.

[mm] \bruch{5}{8} [/mm] * x - [mm] \bruch{23}{32} [/mm] = - [mm] \bruch{1}{2} [/mm] * x + [mm] \bruch{5}{8} [/mm]  
[mm] \bruch{5}{8} [/mm] x -  [mm] \bruch{1}{2} [/mm] x = - [mm] \bruch{5}{8} [/mm] +  [mm] \bruch{23}{32} [/mm]
[mm] \bruch{1}{8} [/mm] x = [mm] \bruch{3}{32} [/mm]
x = [mm] \bruch{3}{32} [/mm] : [mm] \bruch{1}{8} [/mm]
x =  [mm] \bruch{3}{4} [/mm]

Ich glaube aber, daß das Ergebnis nicht richtig ist. Und wie löse ich dann nach y auf ?

Danke

Elke




Bezug
                
Bezug
Schnittp. im Dreieck: Antwort
Status: (Antwort) fertig Status 
Datum: 19:55 So 26.02.2006
Autor: riwe

nein, dieser wert ist falsch!
das ist kein wunder, hast du eine wut auf vorzeichen: zeile 2, da sind einige verdreht?
und wenn du x hast, setzt du einfach in eine der geradengleichungen ein.

die richtigen werte habe ich dir oben zur kontrolle schon hin geschrieben.
werner

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de