www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Schnittpunkt Ebene - Gerade
Schnittpunkt Ebene - Gerade < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schnittpunkt Ebene - Gerade: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:48 So 04.07.2010
Autor: Xeddon

Aufgabe
[]http://fbmn.h-da.de/~ochs/mathe2/uebungen/testklausur4.pdf
Aufgabe 5e
"Bestimmen Sie den Schnittpunkt von E mit der 1. Koordinatenachse.
(d. h. die 2. und die 3. Koordinate müssen 0 sein)"

Hallo,

bin mir nicht sicher ob meine Vorgehensweise zu (e) / Rechnung richtig war.

aus (a) hab die Parameterdarstellung der Ebene
E = [mm] \vektor{0 \\ 0 \\ 1} [/mm] + S [mm] \vektor{1 \\ 1 \\ 0} [/mm] + t [mm] \vektor{1 \\ 2 \\ 2} [/mm]

(b) Normalvektor [mm] \bruch{1}{3} \vektor{2 \\ -2 \\ 1} [/mm]

(c) Hessesche Normalform
E = { y [mm] \in [/mm] R³ : [mm] \bruch{2}{3} [/mm] y1 - [mm] \bruch{2}{3} [/mm] y2 + [mm] \bruch{1}{3} [/mm] y3 - [mm] \bruch{1}{3} [/mm] = 0 }

(d) [mm] \bruch{1}{3} [/mm]

(e) Bei (e) hab ich jetzt die Hessesche mal mit 3 multipliziert und um den Schnittpunkt zu bekommen die Gerade g genommen:

g = { [mm] \vektor{0 \\ 0 \\ 0} [/mm] + t  [mm] \vektor{1 \\ 0 \\ 0} [/mm] : t € R belibig }
Sollte doch eine Gerade g sein, für die ich den Schnittpunkt mit der Ebene berechnen kann und somit den Schnittpunkt mit der 1. Koordinatenachse habe.

g hab ich in E eingesetzt und t = 0,5 raus.
0,5 für t dann in g eingesetzt ergibt

[mm] \vektor{0,5 \\ 0 \\ 0} [/mm]

ich glaub nicht, dass ich alles richtig gemacht habe.. da sollte doch sowas wie ne Gerade als Schnittpunkt rauskommen?

Gruß
xeddon

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Schnittpunkt Ebene - Gerade: Antwort
Status: (Antwort) fertig Status 
Datum: 18:06 So 04.07.2010
Autor: MathePower

Hallo Xeddon,

>
> []http://fbmn.h-da.de/~ochs/mathe2/uebungen/testklausur4.pdf
>  Aufgabe 5e
>  "Bestimmen Sie den Schnittpunkt von E mit der 1.
> Koordinatenachse.
>  (d. h. die 2. und die 3. Koordinate müssen 0 sein)"
>  Hallo,
>  
> bin mir nicht sicher ob meine Vorgehensweise zu (e) /
> Rechnung richtig war.
>  
> aus (a) hab die Parameterdarstellung der Ebene
>  E = [mm]\vektor{0 \\ 0 \\ 1}[/mm] + S [mm]\vektor{1 \\ 1 \\ 0}[/mm] + t
> [mm]\vektor{1 \\ 2 \\ 2}[/mm]
>  
> (b) Normalvektor [mm]\bruch{1}{3} \vektor{2 \\ -2 \\ 1}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


>  
> (c) Hessesche Normalform
>  E = { y [mm]\in[/mm] R³ : [mm]\bruch{2}{3}[/mm] y1 - [mm]\bruch{2}{3}[/mm] y2 +
> [mm]\bruch{1}{3}[/mm] y3 - [mm]\bruch{1}{3}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

= 0 }

>  
> (d) [mm]\bruch{1}{3}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


>  
> (e) Bei (e) hab ich jetzt die Hessesche mal mit 3
> multipliziert und um den Schnittpunkt zu bekommen die
> Gerade g genommen:
>  
> g = { [mm]\vektor{0 \\ 0 \\ 0}[/mm] + t  [mm]\vektor{1 \\ 0 \\ 0}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

: t

> € R belibig }
>  Sollte doch eine Gerade g sein, für die ich den
> Schnittpunkt mit der Ebene berechnen kann und somit den
> Schnittpunkt mit der 1. Koordinatenachse habe.
>  
> g hab ich in E eingesetzt und t = 0,5 raus.
>  0,5 für t dann in g eingesetzt ergibt
>  
> [mm]\vektor{0,5 \\ 0 \\ 0}[/mm]
>  
> ich glaub nicht, dass ich alles richtig gemacht habe.. da
> sollte doch sowas wie ne Gerade als Schnittpunkt
> rauskommen?


Es kann nur der Fall sein, daß die Gerade g ganz in der Ebene E liegt.
Dann erhältst Du die Gerade g als Schnittgerade.

Hier tritt dieser Fall nicht ein, daher schneidet die Gerade g
die Ebene E in einem Punkt.


>  
> Gruß
>  xeddon
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Gruss
MathePower

Bezug
        
Bezug
Schnittpunkt Ebene - Gerade: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:12 So 04.07.2010
Autor: Xeddon

ist die Rechnung / Vorgehensweise eigentlich rightig?

Bezug
                
Bezug
Schnittpunkt Ebene - Gerade: Antwort
Status: (Antwort) fertig Status 
Datum: 19:31 So 04.07.2010
Autor: MathePower

Hallo Xeddon,

> ist die Rechnung / Vorgehensweise eigentlich rightig?


Ja, die Rechnung / Vorgehensweise ist richtig. [ok]


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de