Schnittpunkt Ebene mit Gerade < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 19:50 Mi 05.03.2008 | Autor: | lcdr |
Aufgabe | Gegeben ist eine Gerade g mit der Gleichung [mm] \vec{x} [/mm] = [mm] \vektor{1 \\ 2\\ 0} [/mm] + r [mm] \vektor{-1 \\ -1\\ 1}, [/mm] r [mm] \in [/mm] R.
a)Berechnen Sie die Schnittpunkte [mm] S_{12}, S_{13}, S_{23} [/mm] der Geraden g mit den drei Koordinatenebenen.
b)Berechnen Sie den den Flächeninhalt des Dreiecks, das durch die 3 Punkte [mm] S_{13}, S_{23} [/mm] und dem Nullpunkt gebildet wird. |
Kann mir jemand sagen, was die genaue Ebenengleichung ist für die x1-x3 Ebene, x2-x3 Ebene und wie man den Schnittpunkt mit der Geraden rauskriegt.
Ich hab mal für die x1-x3 Ebene die Ebenengleichung [mm] \vektor{x_{1} \\ 0\\ x_{3}} [/mm] + [mm] l\vektor{x_{1} \\ 0\\ x_{3}} [/mm] + [mm] s\vektor{x_{1} \\ 0\\ x_{3}} [/mm] genommen (stimmt die Ebenengleichung überhaupt??) und dann mit der obigen Geradengleichung gleichgesetzt, aber da kommt nix Anständiges raus. Bleibe da hängen. Weiss nicht, ob man überhaupt eine Ebene mit einer Geraden gleichsetzten darf Das Endergebnis habe ich, aber weiss nicht, wie man dahin kommt. Kann mir jemand den Lösungsweg erklären. Vielen Dank für die Hilfe.
Lösungen lautet:
a) 1-3 Ebene: [mm] x_{2} [/mm] = 0 für r = 2, also [mm] \vec{x_{12}} [/mm] = [mm] \vektor{-1 \\ 0\\ 2}
[/mm]
2-3 Ebene: [mm] x_{1} [/mm] = 0 für r = 1, also [mm] \vec{x_{23}} [/mm] = [mm] \vektor{0 \\ 1\\ 1}
[/mm]
b) [mm] \vektor{0 \\ 1\\ 1} [/mm] * [mm] \vektor{-1 \\ -1\\ 1} [/mm] = 0, also [mm] \vektor{0 \\ 1\\ 1} \perp \vektor{-1 \\ -1\\ 1} [/mm] d.h. die drei Punkte bilden ein rechtwinkliges Dreieck [mm] \\
[/mm]
[mm] \vmat{\vec{x_{13}} - \vec{x_{23}}} [/mm] = [mm] \wurzel{3} [/mm] und [mm] \vmat{ \vec{x_{23} }} [/mm] = [mm] \wurzel{2}. \\ [/mm] Damit A = [mm] \bruch{1}{2} [/mm] * [mm] \wurzel{2} [/mm] * [mm] \wurzel{3}
[/mm]
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:51 Mi 05.03.2008 | Autor: | Markus110 |
Hi! Auf diesem Link findest Du ein super programm zur Ebenen-u. Vektordarstellung als Download: http://www.lehrer.uni-karlsruhe.de/~za186/
Ich denke mal, dass eine Ebene im Koordinatensystem sich durch den Nullpunkt (als Ortsvektor (0;0;0)) und durch die Achsen als Richtungsvektoren darstellen lässt (also z.B.(0;0;1) je nachdem welche Achse, Richtung. Ich hoffe das hilft weiter...LG Markus
|
|
|
|
|
Wie bereits in der Mitteilung beschrieben und dann einfach die Gerade mit den Ebenen nacheinander gleichsetzen um die Schnittpunkte zu finden.
Geg: Gerade g: x = p + r*a
Ebene E: x = q + s*b + t*c oder n*x - d = 0
Lage der Geraden g bzgl. der Ebene E
Setze g = E ==> p + r*a = q + s*b + t*c
Dies sind drei Gleichungen fnr die drei
Variablen r,s und t.
a) Das LGS hat genau eine Lösung:
==> g schneidet E in einem Punkt S
Diesen erhält man, indem man r in g oder
s und t in E einsetzt.
b) Das LGS hat unendlich viele Lösungen:
==> g liegt vollst_ndig in E !
c) Das LGS hat keine Lösung:
==> g verläuft echt parallel zu E !
|
|
|
|
|
Hey,
die Ebenengleichung für die Koordinatenebenen sollte man eigentlich auswendig wissen oder sich zumindestens schnell klarmachen können, wie diese aussehen.
Bsp [mm] x_1-x_2-Ebene: [/mm] Was haben alle Punkte die in dieser Ebene liegen gemeinsam? Nun die [mm] x_3-Koordinate [/mm] ist 0. Also leutet die Koordinatendarstellung der [mm] x_1-x_2-Ebene: x_3=0.
[/mm]
Gruß Patrick
|
|
|
|