www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - Schnittpunkt Ebene mit Gerade
Schnittpunkt Ebene mit Gerade < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schnittpunkt Ebene mit Gerade: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:50 Mi 05.03.2008
Autor: lcdr

Aufgabe
Gegeben ist eine Gerade g mit der Gleichung [mm] \vec{x} [/mm] = [mm] \vektor{1 \\ 2\\ 0} [/mm] + r [mm] \vektor{-1 \\ -1\\ 1}, [/mm] r [mm] \in [/mm] R.
a)Berechnen Sie die Schnittpunkte [mm] S_{12}, S_{13}, S_{23} [/mm] der Geraden g mit den drei Koordinatenebenen.
b)Berechnen Sie den den Flächeninhalt des Dreiecks, das durch die 3 Punkte [mm] S_{13}, S_{23} [/mm] und dem Nullpunkt gebildet wird.

Kann mir jemand sagen, was die genaue Ebenengleichung ist für die x1-x3 Ebene, x2-x3 Ebene und wie man den Schnittpunkt mit der Geraden rauskriegt.
Ich hab mal für die x1-x3 Ebene die Ebenengleichung [mm] \vektor{x_{1} \\ 0\\ x_{3}} [/mm] + [mm] l\vektor{x_{1} \\ 0\\ x_{3}} [/mm] + [mm] s\vektor{x_{1} \\ 0\\ x_{3}} [/mm] genommen (stimmt die Ebenengleichung überhaupt??) und dann mit der obigen Geradengleichung gleichgesetzt, aber da kommt nix Anständiges raus. Bleibe da hängen. Weiss nicht, ob man überhaupt eine Ebene mit einer Geraden gleichsetzten darf Das Endergebnis habe ich, aber weiss nicht, wie man dahin kommt. Kann mir jemand den Lösungsweg erklären. Vielen Dank für die Hilfe.

Lösungen lautet:
a) 1-3 Ebene: [mm] x_{2} [/mm] = 0 für r = 2, also [mm] \vec{x_{12}} [/mm] = [mm] \vektor{-1 \\ 0\\ 2} [/mm]

2-3 Ebene: [mm] x_{1} [/mm] = 0 für r = 1, also [mm] \vec{x_{23}} [/mm] = [mm] \vektor{0 \\ 1\\ 1} [/mm]

b) [mm] \vektor{0 \\ 1\\ 1} [/mm]  * [mm] \vektor{-1 \\ -1\\ 1} [/mm] = 0, also [mm] \vektor{0 \\ 1\\ 1} \perp \vektor{-1 \\ -1\\ 1} [/mm] d.h. die drei Punkte bilden ein rechtwinkliges Dreieck [mm] \\ [/mm]

[mm] \vmat{\vec{x_{13}} - \vec{x_{23}}} [/mm] = [mm] \wurzel{3} [/mm] und [mm] \vmat{ \vec{x_{23} }} [/mm] = [mm] \wurzel{2}. \\ [/mm] Damit A = [mm] \bruch{1}{2} [/mm] * [mm] \wurzel{2} [/mm] * [mm] \wurzel{3} [/mm]

        
Bezug
Schnittpunkt Ebene mit Gerade: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:51 Mi 05.03.2008
Autor: Markus110

Hi! Auf diesem Link findest Du ein super programm zur Ebenen-u. Vektordarstellung als Download:   http://www.lehrer.uni-karlsruhe.de/~za186/

Ich denke mal, dass eine Ebene im Koordinatensystem sich durch den Nullpunkt (als Ortsvektor (0;0;0)) und durch die Achsen als Richtungsvektoren darstellen lässt (also z.B.(0;0;1) je nachdem welche Achse, Richtung. Ich hoffe das hilft weiter...LG Markus

Bezug
        
Bezug
Schnittpunkt Ebene mit Gerade: Antwort
Status: (Antwort) fertig Status 
Datum: 21:08 Mi 05.03.2008
Autor: Markus110

Wie bereits in der Mitteilung beschrieben und dann einfach die Gerade mit den Ebenen nacheinander gleichsetzen um die Schnittpunkte zu finden.


Geg: Gerade g: x = p + r*a
     Ebene  E: x = q + s*b + t*c oder n*x - d = 0

   Lage der Geraden g bzgl. der Ebene E

   Setze g = E ==> p + r*a = q + s*b + t*c
   Dies sind drei Gleichungen fnr die drei
   Variablen r,s und t.

   a) Das LGS hat genau eine Lösung:
      ==> g schneidet E in einem Punkt S
      Diesen erhält man, indem man r in g oder
      s und t in E einsetzt.
   b) Das LGS hat unendlich viele Lösungen:
      ==> g liegt vollst_ndig in E !
   c) Das LGS hat keine Lösung:
      ==> g verläuft echt parallel zu E !


Bezug
        
Bezug
Schnittpunkt Ebene mit Gerade: Antwort
Status: (Antwort) fertig Status 
Datum: 21:13 Mi 05.03.2008
Autor: XPatrickX

Hey,
die Ebenengleichung für die Koordinatenebenen sollte man eigentlich auswendig wissen oder sich zumindestens schnell klarmachen können, wie diese aussehen.
Bsp [mm] x_1-x_2-Ebene: [/mm] Was haben alle Punkte die in dieser Ebene liegen gemeinsam? Nun die [mm] x_3-Koordinate [/mm] ist 0. Also leutet die Koordinatendarstellung der [mm] x_1-x_2-Ebene: x_3=0. [/mm]
Gruß Patrick

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de