www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Vektoren" - Schnittpunkt ausrechnen
Schnittpunkt ausrechnen < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schnittpunkt ausrechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:59 Di 27.02.2007
Autor: Bit2_Gosu

Hallo !

Die frage ist, in welchem Punkt sich die Gerade g: [mm] \vec{x} [/mm] = [1|-1|1] + r*[3|2|1] mit der Gerade h schneidet.
Letztere geht durch die Punkte A (3/2/2) und B (4/1/2).

Als wenn ich sage h hat die Form [3|2|2] + [mm] s*\overrightarrow{AB} [/mm]

und ich danne beide Geraden gleichsetze kommt bei mir raus:

r = [mm] [\bruch{2}{3}|\bruch{3}{2}|1] [/mm] + [mm] s*[\bruch{1}{3}|\bruch{-1}{2}|0] [/mm]

Aber wie soll ich daraus denn jetzt denn Schnittpunkt ausrechnen ??

Danke !

        
Bezug
Schnittpunkt ausrechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:04 Di 27.02.2007
Autor: Stefan-auchLotti


> Hallo !

[mm] $\bffamily \text{hi.}$ [/mm]

>  
> Die frage ist, in welchem Punkt sich die Gerade g: [mm]\vec{x}[/mm]
> = [1|-1|1] + r*[3|2|1] mit der Gerade h schneidet.
>  Letztere geht durch die Punkte A (3/2/2) und B (4/1/2).
>  
> Als wenn ich sage h hat die Form [3|2|2] +
> [mm]s*\overrightarrow{AB}[/mm]
>  
> und ich danne beide Geraden gleichsetze kommt bei mir
> raus:
>  
> r = [mm][\bruch{2}{3}|\bruch{3}{2}|1][/mm] +
> [mm]s*[\bruch{1}{3}|\bruch{-1}{2}|0][/mm]
>  
> Aber wie soll ich daraus denn jetzt denn Schnittpunkt
> ausrechnen ??
>  
> Danke !

[mm] $\bffamily \text{Zeig' mal deine genaue Rechnung, hast du durch einen Vektor geteilt?}$ [/mm]

[mm] $\bffamily \text{Gruß, Stefan.}$ [/mm]

Bezug
                
Bezug
Schnittpunkt ausrechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:10 Di 27.02.2007
Autor: Bit2_Gosu

Hi !

[1|-1|1] + r*[3|2|1] = [3|2|2] + s*[1|-1|0]

r*[3|2|1] = [2|3|1] + s*[1|-1|0]

r = [mm] [\bruch{2}{3}|\bruch{3}{2}|1] [/mm] + [mm] s*[\bruch{1}{3}|\bruch{-1}{2}|0] [/mm]

Bezug
                        
Bezug
Schnittpunkt ausrechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:23 Di 27.02.2007
Autor: Stefan-auchLotti


> Hi !
>  
> [1|-1|1] + r*[3|2|1] = [3|2|2] + s*[1|-1|0]
>  
> r*[3|2|1] = [2|3|1] + s*[1|-1|0]
>  

[mm] $\bffamily \text{Okay, so weit hätte ich das auch gemacht.}$ [/mm]

> r = [mm][\bruch{2}{3}|\bruch{3}{2}|1][/mm] +
> [mm]s*[\bruch{1}{3}|\bruch{-1}{2}|0][/mm]  

[mm] $\bffamily \text{Ich bin mir zwar nicht sicher und habe auch nicht nachgerechnet, aber ich glaube, dass man nicht einfach durch einen Vektor teilen darf (?)}$ [/mm]

[mm] $\bffamily \text{Du musst das ganze jetzt in ein LGS überführen und dann die prüfen, ob das lösbar ist.}$ [/mm]

[mm] $\bffamily \text{Stefan.}$ [/mm]

Bezug
                                
Bezug
Schnittpunkt ausrechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:29 Di 27.02.2007
Autor: Bit2_Gosu

Ja und genau da hab ich keine Ahnung..

Bezug
                                        
Bezug
Schnittpunkt ausrechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:45 Di 27.02.2007
Autor: Stefan-auchLotti


> Ja und genau da hab ich keine Ahnung..

[mm] $\bffamily \text{Nehmen wir mal die Form }$ [/mm]

[mm] $$\bffamily r*\vektor{3 \\ 2 \\ 1}=\vektor{2 \\ 3 \\ 1}+s*\vektor{1 \\ -1 \\ 0}$$ [/mm]
[mm] $\bffamily \text{Jetzt ausnutzen, dass ein Skalar und ein Vektor miteinander multipliziert werden, indem man jede Vektorkoordinate mit ihm multipliziert und das ganze in ein LGS.}$ [/mm]

[mm] $$\bffamily \vmat{ 3*r&=&2&+&1*s\\ 2*r&=&3&-&1*s \\ 1*r&=&1&+&0*s}$$ [/mm]
[mm] $\bffamily \text{Überprüfen, ob lösbar (ist lösbar, da du das schon angegeben hast, das die sich schneiden) und dann bei einer Geraden den entsprechenden Skalar einsetzen, fertig.}$ [/mm]

[mm] $\bffamily \text{Gruß, Stefan.}$ [/mm]


Bezug
                                                
Bezug
Schnittpunkt ausrechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:49 Di 27.02.2007
Autor: Bit2_Gosu

ach ich Idiot ^^  natürlich... so ging das ;)

Danke :D

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de