Schnittpunkt berechnen < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:55 Mi 10.09.2008 | Autor: | Ailien. |
Aufgabe | Treffen sich die beiden Flugzeuge?
Flugzeug 1 geht durch die Punkte (-1/-2/3) ; Flugzeug 2 fliegt entlang der Geraden [mm] \vec{a}= [/mm] (-2/1/4) + t* (4/-1/-1) |
Hallo :)
Also bei Flugzeug 2 sollen die Vektoren natürlich untereinander geschrieben sein, ich wusste aber nicht wie das klappt! Also nun zu der Aufgabe. Ich habe erstmal eine Parameterdarstellung für Flugzeug 1 erstellt, die da lautet: (-1/-2/3) + t* (3/6/2). So nun habe ich mir das auch zeichnerisch angeguckt und festgestellt, dass sich die Geraden im Punkt (-1/0/3) schneiden. Um das Ganze rechnerisch zu beweisen muss ich ja die Gleichungen gleichsetzen. Muss ich das dann für x, y und z machen? Oder reicht eine und das Ergebnis setze ich dann in eine Andere ein?
Danke für eure Hilfe :)
|
|
|
|
Hallo Ailien.!
> Treffen sich die beiden Flugzeuge?
> Flugzeug 1 geht durch die Punkte (-1/-2/3) ; Flugzeug 2
> fliegt entlang der Geraden [mm]\vec{a}=[/mm] (-2/1/4) + t*
> (4/-1/-1)
> Hallo :)
> Also bei Flugzeug 2 sollen die Vektoren natürlich
> untereinander geschrieben sein, ich wusste aber nicht wie
> das klappt! Also nun zu der Aufgabe. Ich habe erstmal eine
> Parameterdarstellung für Flugzeug 1 erstellt, die da
> lautet: (-1/-2/3) + t* (3/6/2). So nun habe ich mir das
> auch zeichnerisch angeguckt und festgestellt, dass sich die
> Geraden im Punkt (-1/0/3) schneiden. Um das Ganze
> rechnerisch zu beweisen muss ich ja die Gleichungen
> gleichsetzen. Muss ich das dann für x, y und z machen? Oder
> reicht eine und das Ergebnis setze ich dann in eine Andere
> ein?
> Danke für eure Hilfe :)
Ich glaube, da fehlt ein Punkt für Flugzeug 1, demnach kann ich deine Geradendarstellung nicht korrigieren. Mit dem Zeichnen in 3D ist das so eine Sache, da du ja nur zweidimensional zeichnen kannst, und selbst wenn du perspektivisch drei Achsen richtig zeichnest, glaube ich nicht, dass man einen dreidimensionalen Schnittpunkt daraus ablesen kann. Ich jedenfalls könnte das nicht...
Aber du sollst es ja auch rechnerisch machen (und in sonst allen Fällen ist das mit dem Zeichnen schon eine gute Idee ). Dafür musst du das Ganze in der Tat gleichsetzen, aber deine Frage ist etwas seltsam. Wenn du es gleichsetzt, hast du doch sowohl links als auch rechts jeweils x, y und z Koordinaten. Das ganze kannst du dann als drei Gleichungen schreiben, und du erhältst ein lineares Gleichungssystem mit drei Gleichungen und zwei Unbekannten. Wenn du [mm] t_1 [/mm] und [mm] t_2 [/mm] findest, so dass alle drei Gleichungen erfüllt sind, hast du einen Schnittpunkt gefunden. Glaube ich jedenfalls...
Viele Grüße
Bastiane
|
|
|
|