www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - Schnittpunktberechnung
Schnittpunktberechnung < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schnittpunktberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:33 So 09.01.2011
Autor: scream__

Aufgabe
a = [mm] \vektor{5 \\ 1} [/mm]
v = [mm] \vektor{4 \\ 4} [/mm]
b = [mm] \vektor{5 \\ 5} [/mm]
n = ?

Gerade g(t) = a + [mm] t\*v [/mm]
Aufgabenstellen: Berechnen Sie n so, dass eine Gerade mit dem Aufpunkt b ensteht und diese im 90° Winkel die Gerade g(t) schneidet.

Also:
meine Idee war es jetzt die beiden Geraden gleichzusetzen, also:
g(t) = h(s)
[mm] a+t\*v [/mm] = [mm] b+1\*n [/mm]      |*v  (s=1 um Rechenaufwand zu sparen)
[mm] a\*v+t\*|v|^{2} [/mm] = [mm] b\*v [/mm]     (da ja n 90° auf v steht kommt ja durch die Skalarmult. 0 raus)

Wenn ich nun einsetze kommt folgendes raus:
24 + 32t = 40
t= 0,5

Wenn ich nun g(0,5) mache kommt  [mm] \vektor{7 \\ 3} [/mm] raus
Was der Schnittpunkt wäre, was aber falsch ist.
Laut meiner Skizze ist der [mm] \vektor{3 \\ 3} [/mm]

Wenn ich nun noch [mm] \vektor{5 \\ 5} [/mm] - [mm] \vektor{3 \\ 3} [/mm]
um meinen n Vektor zu bekommen geht das noch mehr in die Hose.

Kann mir hier jemand helfen?
Danke im voraus.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Schnittpunktberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:44 So 09.01.2011
Autor: Adamantin

Sofern ich nicht gänzlich daneben liege: du bist in [mm] \IR^2 [/mm] und hast alles außer dem fehlenden Richtungsvektor gegeben? Du weißt ,dass dieser orthogonal auf [mm] \vec{v} [/mm] mit [mm] \vektor{ 4 \\ 4 } [/mm] stehen soll, also warum drehst du nicht entweder die x- oder y-Komponente um, damit hast du einen orthogonalen Vektor und setzt diesen für n ein? ;)

Demnach wäre [mm] \vektor{ -4 \\ 4 } [/mm] im Zusammenhang mit dem Stützvektor [mm] \vec{b} [/mm] doch eine hervorragende Lösung. Schneiden tun sich alle Geraden in [mm] \IR^2 [/mm] und da keinerlei Angabe über den Schnittpuntk gemacht ist, kann jede Lösung auf diese Weise richtig sein.

Zu deiner Lösung: auch korrekt wenn auch viel zu umständlich. Dein Schnittpunkt mit den Koordinaten [mm] \vektor{ 7 \\ 3 } [/mm] muss mit dem Stützpunkt b den Richtungsvektor der neuen Geraden bzw der ges. Geraden geben. Daher gilt: [mm] \vec{s}-\vec{b}=\vektor{ 2 \\ -2 } [/mm]
Und das ist dasselbe wie 4/-4 oder eben eine Winkelhalbierende, die senkrecht auf 1/1 steht ;)


Bezug
                
Bezug
Schnittpunktberechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:08 So 09.01.2011
Autor: scream__


Bezug
        
Bezug
Schnittpunktberechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:11 So 09.01.2011
Autor: scream__

ok so gehts auch
thx

Bezug
                
Bezug
Schnittpunktberechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:36 So 09.01.2011
Autor: Adamantin

Hatte meine Antwort noch editiert, dort steht auch die Lösung zu deinem Ansatz, der auch richtig war

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de