www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Schnittpunkte zweier Kreise
Schnittpunkte zweier Kreise < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schnittpunkte zweier Kreise: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:31 So 29.01.2006
Autor: Gwin

Aufgabe
Berechnen Sie die Schnittpunkte derbeiden Kreise:

I  [mm] x^{2}+y^{2}-6x-8y=0 [/mm]
II [mm] x^{2}+y^{2}-4x+6y-12=0 [/mm]

Nabend...
und wiedermal ein für mich unlößbarer fall...

mein ansatz:
I - II = -2x-14y+12=0
auflösen nach x
-2x=14y-12 |/-2
x = -7y+6

x in I einsetzen um y zu berechnen

[mm] (-7y+6)^{2}+y²-6(-7y+6)-8y=0 [/mm]
49y²-84y+36+y²+42y-36-8y=0
50y²-50y=0
y²-y=0

[mm] y_{1}=0 [/mm]
[mm] y_{2}=1 [/mm]

wenn ich jetzt [mm] y_{1}=0 [/mm] in I einsetze bekomme ich 2 x-werte herraus
und mit [mm] y_{2}=1 [/mm] nochmals 2 x-werte --> 2 y-Werte aber 4 x-Werte...
aus diesem ergebniss folgere ich das ich irgendwo nen fehler gemacht habe... ich weiß aber leider nicht wo...

kann mir hier bitte nochmal jemand auf die sprünge helfen...

mfg Gwin



        
Bezug
Schnittpunkte zweier Kreise: zwei Punkte ==> Gerade
Status: (Antwort) fertig Status 
Datum: 20:35 So 29.01.2006
Autor: Karl_Pech

Hallo Gwin,


> Berechnen Sie die Schnittpunkte derbeiden Kreise:
>  
> I  [mm]x^{2}+y^{2}-6x-8y=0[/mm]
>  II [mm]x^{2}+y^{2}-4x+6y-12=0[/mm]


Bei solchen Gleichungen sollte man (meistens) immer versuchen die Gleichungen auf eine Art "Normalform" umzuformen. Wie sieht die bei einem Kreis in einem kartesischen Koordinatensystem aus? Beim Ursprungskreis ist es die Gleichung [mm]x^2 + y^2 = r^2[/mm]. Alle Punkte [mm](x,y)[/mm], die auf der Kreislinie liegen, haben also den selben Abstand vom Ursprung [mm]r[/mm], was hier durch die Pythagoras-Beziehung ausgedrückt werden kann. Liegt der Mittelpunkt des Kreises nicht im Ursprung, so muß die Gleichung entsprechend angepasst werden:


[mm](x-a)^2 + (y-b)^2 = r^2[/mm]


Und auf diese Form bringen wir jetzt die beiden Kreise:


[mm]x^2 + y^2 - 6x - 8y = x^2 - 2\cdot{3x} + y^2 - 2\cdot{4y}[/mm]

[mm]= x^2 - 2\cdot{3x} + 3^2 + y^2 - 2\cdot{4y} + 4^2 - 3^2 - 4^2[/mm]

[mm]= (x-3)^2 + (y-4)^2 - 5^2 = 0 \gdw (x-3)^2 + (y-4)^2 = 5^2[/mm]


[mm]x^2 + y^2 - 4x + 6y - 12 = x^2 - 2\cdot{2x} + 4 + y^2 + 2\cdot{3y} + 9 - 12 - 4 - 9[/mm]

[mm]= (x-2)^2 + (y+3)^2 - 5^2 = 0 \gdw (x-2)^2 + (y+3)^2 = 5^2[/mm]


Jetzt setzen wir die Gleichungen gleich:


[mm](x-3)^2 + (y-4)^2 = (x-2)^2 + (y+3)^2 \gdw (x-3)^2 - (x-2)^2 = (y+3)^2 - (y-4)^2[/mm]

[mm]\gdw (x-3-x+2)(x-3+x-2) = -1(2x-5) = (y+3-y+4)(y+3+y-4) = 7(2y-1)[/mm]


Jetzt entscheiden wir uns für eine Variable nach der wir auflösen. Wir wissen nämlich, daß sich Kreise in höchstens 2 Punkten schneiden. Eine Gerade wird jedoch durch zwei Punkte beschrieben:


[mm]\gdw \frac{5-2x}{7} = 2y-1 \gdw y = \frac{5-2x}{14}+ \frac{7}{14} = \frac{6-x}{7}[/mm]


Und das setzen wir jetzt als Funktion:


[mm]g(x) := \frac{6-x}{7}[/mm]


Unsere neue Aufgabe besteht nun darin den Schnittpunkt von [mm]g[/mm] mit einem der Kreise zu bestimmen. Da uns [mm]g[/mm] bei dem Schnittpunkt [mm]x_S[/mm] den Funktionswert [mm]y_S[/mm] liefert, gilt:


[mm]\left(x_S-3\right)^2 + \left(y_S-4\right)^2 = \left(x_S-3\right)^2 + \left(\frac{6-x_S}{7}-4\right)^2 = 5^2[/mm]


Dies ist eine quadratische Gleichung. Löse diese nach [mm]x_{S_1}[/mm] und [mm]x_{S_2}[/mm] auf, und du erhälst die [mm]x\texttt{--Stellen}[/mm] der beiden Schnittpunkte. Durch das Einsetzen dieser Stellen in [mm]g[/mm] erhälst du die zugehörigen [mm]y\texttt{--Werte}[/mm].



Grüße
Karl





Bezug
                
Bezug
Schnittpunkte zweier Kreise: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:41 Mo 30.01.2006
Autor: Gwin

hi Karl...

vielen dank für deine wirklich sehr ausführliche lösung...
habe dein lösungsansatz mal durchprobiert...
irgendwo in der mitte der aufgabe habe ich dann gemerkt das ja erstmal die Formeln der Kreise in verschiebungslage hergeleitet wurden...
also habe ich mir mal spontan nen zettel und nen zirkel geschnappt und habe die ganze sache mal aufgezeichnet...
und bin zu der lösung gekommen das die schnittpunkte bei S1(-1;1) und S2(6;0) liegen...
hier ist mir aufgefallen das die y-werte schonmal die sind die ich ausgerechnet hatte...
also habe ich mein lösungsansatz nochmal rausgesucht und habe geguckt ob ich irgendwie auf die -1 und 6 komme...
dann nach ein bissel rumprobieren ist mir die nach x aufgelöste formel (x=6-7y) aufgefallen... also mal eben y eingesetzt und siehe da es kamen die richtigen x werte raus...

werde das nochmal mit deinem weg ausprobieren...
also tausend dank nochmal...

mfg Gwin

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de