www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Schnittwinkel
Schnittwinkel < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schnittwinkel: Tipp/Korrektur
Status: (Frage) beantwortet Status 
Datum: 01:58 Di 14.02.2012
Autor: al3pou

Aufgabe
Für welches a bilden der Lösungsvektor und die x-Achse einen
Winkel von [mm] \bruch{\pi}{4}? [/mm]


Hallo,

den Lösungsvektor habe ich schon vorher berechnet und der
stimmt auch so.

   [mm] \vec{x} [/mm] = (a, [mm] \bruch{1}{a})^{T} [/mm]

Die Formel für den Schnittwinkel ist:

   cos [mm] \gamma [/mm] = [mm] \bruch{|\vec{a} \circ \vec{b}|}{|\vec{a}|*|\vec{b}|} [/mm]

Jetzt setze ich alles ein und erhalte dann:

   cos [mm] \gamma [/mm] = [mm] \bruch{a}{\wurzel{a^{2} + \bruch{1}{a^{2}}}} [/mm]

dann würde ich ja schreiben um den Winkel zu errechnen:

  [mm] \gamma [/mm] = [mm] arccos(\bruch{a}{\wurzel{a^{2} + \bruch{1}{a^{2}}}}) [/mm]

  [mm] \bruch{\pi}{4} [/mm] = [mm] arccos(\bruch{a}{\wurzel{a^{2} + \bruch{1}{a^{2}}}}) [/mm]

ich stelle mir nur die Frage, ob ich es so ausrechnen soll,
oder ob es eurer Meinung nach reichen würde es so zu
schreiben und dann einfach die Lösung abzulesen, da wir in
unserer Klausur ein DIN A5 Heft benutzen dürfen und da auch
eine Winkeltabelle drin haben dürfen.
Ich wüsste aber auch nicht genau, wie ich jetzt weiter
rechnen soll. a müsste [mm] \ [/mm]

Gruß
al3pou


        
Bezug
Schnittwinkel: Antwort
Status: (Antwort) fertig Status 
Datum: 03:32 Di 14.02.2012
Autor: MathePower

Hallo al3pou,

> Für welches a bilden der Lösungsvektor und die x-Achse
> einen
> Winkel von [mm]\pi\4?[/mm]
>  Hallo,
>  
> den Lösungsvektor habe ich schon vorher berechnet und der
> stimmt auch so.
>  
> [mm]\vec{x}[/mm] = (a, [mm]\bruch{1}{a})^{T}[/mm]
>  
> Die Formel für den Schnittwinkel ist:
>  
> cos [mm]\gamma[/mm] = [mm]\bruch{|\vec{a} \circ \vec{b}|}{|\vec{a}|*|\vec{b}|}[/mm]
>  
> Jetzt setze ich alles ein und erhalte dann:
>  
> cos [mm]\gamma[/mm] = [mm]\bruch{a}{\wurzel{a^{2} + \bruch{1}{a^{2}}}}[/mm]
>  
> dann würde ich ja schreiben um den Winkel zu errechnen:
>  
> [mm]\gamma[/mm] = [mm]arccos(\bruch{a}{\wurzel{a^{2} + \bruch{1}{a^{2}}}})[/mm]
>  
> [mm]\bruch{\pi}{4}[/mm] = [mm]arccos(\bruch{a}{\wurzel{a^{2} + \bruch{1}{a^{2}}}})[/mm]
>  


Laut Aufgabe handelt es sich um den Winkel "[mm]\pi[/mm]" statt "[mm]\bruch{\pi}{4}[/mm]".


> ich stelle mir nur die Frage, ob ich es so ausrechnen soll,
> oder ob es eurer Meinung nach reichen würde es so zu
> schreiben und dann einfach die Lösung abzulesen, da wir in
> unserer Klausur ein DIN A5 Heft benutzen dürfen und da
> auch
> eine Winkeltabelle drin haben dürfen.
>  Ich wüsste aber auch nicht genau, wie ich jetzt weiter
> rechnen soll. a müsste [mm]\[/mm]

>


Sofern der Winkelwert in der Tabelle vorhanden ist,
kannst Du das ausrechnen.

  

> Gruß
>  al3pou
>  


Gruss
MathePower

Bezug
        
Bezug
Schnittwinkel: Antwort
Status: (Antwort) fertig Status 
Datum: 09:29 Di 14.02.2012
Autor: fred97


> Für welches a bilden der Lösungsvektor und die x-Achse
> einen
> Winkel von [mm]\pi\4?[/mm]

Im Quelltext sehe ich, dass da  [mm]\pi/4[/mm] steht.


>  Hallo,
>  
> den Lösungsvektor habe ich schon vorher berechnet und der
> stimmt auch so.
>  
> [mm]\vec{x}[/mm] = (a, [mm]\bruch{1}{a})^{T}[/mm]
>  
> Die Formel für den Schnittwinkel ist:
>  
> cos [mm]\gamma[/mm] = [mm]\bruch{|\vec{a} \circ \vec{b}|}{|\vec{a}|*|\vec{b}|}[/mm]
>  
> Jetzt setze ich alles ein und erhalte dann:
>  
> cos [mm]\gamma[/mm] = [mm]\bruch{a}{\wurzel{a^{2} + \bruch{1}{a^{2}}}}[/mm]
>  
> dann würde ich ja schreiben um den Winkel zu errechnen:
>  
> [mm]\gamma[/mm] = [mm]arccos(\bruch{a}{\wurzel{a^{2} + \bruch{1}{a^{2}}}})[/mm]
>  
> [mm]\bruch{\pi}{4}[/mm] = [mm]arccos(\bruch{a}{\wurzel{a^{2} + \bruch{1}{a^{2}}}})[/mm]
>  
> ich stelle mir nur die Frage, ob ich es so ausrechnen soll,
> oder ob es eurer Meinung nach reichen würde es so zu
> schreiben und dann einfach die Lösung abzulesen, da wir in
> unserer Klausur ein DIN A5 Heft benutzen dürfen und da
> auch
> eine Winkeltabelle drin haben dürfen.
>  Ich wüsste aber auch nicht genau, wie ich jetzt weiter
> rechnen soll. a müsste [mm]\[/mm]


ich würde es so machen: weil die 1. und die 2. Komponente von (a, $ [mm] \bruch{1}{a})^{T} [/mm] $  dasselbe Vorzeichen haben und weil (a, $ [mm] \bruch{1}{a})^{T} [/mm] $  mit der x-Achse einen Winkel von 45° einschließt, hat (a, $ [mm] \bruch{1}{a})^{T} [/mm] $   die Gestalt

                    (a, $ [mm] \bruch{1}{a})^{T} [/mm] $ = [mm] t(1,1)^T [/mm] mit t [mm] \in \IR. [/mm]

Also gilt: a=1/a.

Das liefert a=1 oder a=-1

FRED

>  
> Gruß
>  al3pou
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de