www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Vektoren" - Schnittwinkel zweier Geraden
Schnittwinkel zweier Geraden < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schnittwinkel zweier Geraden: KLEINES Probl. trotz viel Text
Status: (Frage) beantwortet Status 
Datum: 18:52 Do 05.10.2006
Autor: Pure

Aufgabe
Bestimmen Sie den Schnittwinkel der Geraden g und h.
a) g: [mm] \vec{x} [/mm] = [mm] \vektor{-3 \\ 0 \\ 1} [/mm] + [mm] t*\vektor{10 \\ -1 \\ -2} [/mm]
[mm] h:\vec{x}=\vektor{7 \\ -1 \\ -1} [/mm] + [mm] t*\vektor{-5 \\ 2 \\ -2} [/mm]

Hallöchen! Kaum hat das Schuljahr wieder angefangen, häufen sich bei mir auch wieder meine (Mathe-)Probleme*g*
Wir haben heute mit dem Skalarprodukt angefangen und haben bisher eigentlich nur besprochen, dass das Skalarprodukt zweier Vektoren gleich 0 sein muss, damit diese orthogonal sind. Mit Winkeln haben wir auch angefangen, mit der Formel:
[mm] cos(\gamma) [/mm] = [mm] \bruch{\vec{u}*\vec{v}}{|\vec{u}|*|\vec{v}|} [/mm]
Also zur Erklärung: Ich meine den cos von dem griech Zeichen für Winkel (man spricht es "fi" aus, aber es ist mir unendlich peinlich, dass ich nicht weiß, wie man das schreibt). Und der Zähler des Bruches ist das Skalarprodukt von u und v (Vektoren) und der Nenner besteht dann aus den Strecken von u und v, nur multipliziert.
Gut. Soweit erst mal das.
Meine Frage ist jetzt folgendes:
1. Wie rechne ich den Winkel mit Geraden?
2. Soll ich dann einfach nur die Richtungsvektoren zum Rechnen nehmen und den "Rest" der Geradengleichung ignorieren? Für diesen Fall wüsste ich ja dann, wie ich die Winkel rechnen soll, aber ich weiß es nicht, wenn ich die ganze Geradengleichung miteinbeziehen soll.

Kann mir da bitte bitte jemand auf die Sprünge helfen? :-) Würde mich echt freuen! Aber schon mal vielen Dank, dass ihr meinen langen Text überhaupt bis hier her gelesen habt :-)

liebe Grüße, Pure

        
Bezug
Schnittwinkel zweier Geraden: nur Richtungsvektoren
Status: (Antwort) fertig Status 
Datum: 18:56 Do 05.10.2006
Autor: Loddar

Hallo Pure!


> [mm]cos(\gamma)[/mm] = [mm]\bruch{\vec{u}*\vec{v}}{l\vec{a}l*l\vec{a}l}[/mm]
> Also zur Erklärung: Ich meine den cos von dem griech
> Zeichen für Winkel (man spricht es "fi" aus, aber es ist
> mir unendlich peinlich, dass ich nicht weiß, wie man das
> schreibt).

Das schreibt sich [mm] $\varphi$ [/mm] (hier im Formeleditor "\varphi") .


> Meine Frage ist jetzt folgendes:
> 1. Wie rechne ich den Winkel mit Geraden?
> 2. Soll ich dann einfach nur die Richtungsvektoren zum
> Rechnen nehmen und den "Rest" der Geradengleichung ignorieren?

Ganz genau so geht es. Vorausgesetzt, die beiden Geraden schneiden sich auch wirklich, wird der Schnittwinkel nur durch die beiden Richtungsvektoren bestimmt.


Gruß
Loddar


Bezug
                
Bezug
Schnittwinkel zweier Geraden: danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:25 Do 05.10.2006
Autor: Pure

Hallo Loddar!
Danke für deine Antwort und deine Mühe! :-)

Also ich habe das jetzt mal durchgerechnet und habe für [mm] \varphi [/mm] rausbekommen: [mm] \varphi= [/mm] 144,63°.

Gut, danke, Aufgabe gelöst, die b und die c hab ich jetzt nach der gleichen Methoden gemacht, ich hatte sie hier nicht angegeben, weil es ja nur andere Zahlen sind als in a.

:-)

Liebe Grüße, Pure

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de