www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Numerik" - Schur-Woodbury-Identität
Schur-Woodbury-Identität < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schur-Woodbury-Identität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:14 So 17.06.2012
Autor: Katthi

Aufgabe
[mm] A \in \IR^{n \times n}, D \in \IR^{m \times m} [/mm] invertierbare Matrizen und [mm] U,V \in \IR^{n \times m}[/mm]  . Weiterhin sei [mm] M = \pmat{ A & U \\ V^T & D } \in \IR^{(n+m) \times (n+m)} [/mm] eine invertierbare Matrix
mit der Inversen [mm] M^{-1} = \pmat{ E & F \\ G & H } [/mm].
Beweisen Sie die folgende Identität von Schur und Woodbury:
[mm] (A- UD^{-1}V^T)^{-1} = A^{-1} + A^{-1}U(D-V^TA^{-1}U)^{-1}V^TA^{-1} [/mm]
Leiten Sie dazu Darstellungen von E,F,G und H her.

Hallo Leute,

hier habe ich leider überhaupt keine Idee, wie ich an diese Aufgabe rangehen soll.
Irgendwie muss ich E,F,G und H durch A,D,V und U ausdrücken denke ich. Aber wie komme ich auf [mm] M^{-1} [/mm] ?

Habt ihr eine Idee??

Viele Grüße
Katthi


        
Bezug
Schur-Woodbury-Identität: Antwort
Status: (Antwort) fertig Status 
Datum: 15:25 So 17.06.2012
Autor: wieschoo

Die Identität weiß du nach, in dem Du
[mm] (A- UD^{-1}V^T)^{-1} \cdot U[/mm] rechnest mit [mm]U:= A^{-1} + A^{-1}U(D-V^TA^{-1}U)^{-1}V^TA^{-1}[/mm].

Bei dem anderen wird das ein haufen Rechnung sein.

Das ist anscheinend die Verallgemeinerung von der Shermann-Morrison-Woodbury-Formel:
http://www.math.ufl.edu/~hager/papers/Lightning/update.pdf



Bezug
                
Bezug
Schur-Woodbury-Identität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:57 So 17.06.2012
Autor: Katthi

Ja das habe ich auch gefunden, dass das überall irgendwie anders heißt:D haben da ja auch in der VL nie drüber geredet, weshalb ich auch garkeinen Ansatzpunkt irgendwie erkennen kann.

Aber ich muss das ja irgendwie auf die Inverse [mm] M^{-1} [/mm] beziehen... also zumindest habe ich das so verstanden, dass ich die Identität eben durch dieses E,F,G und H zeigen soll... Also folgt jetzt eine Megarechnung meinst du?! :D

LG
Katthi



Bezug
                        
Bezug
Schur-Woodbury-Identität: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 So 17.06.2012
Autor: wieschoo

Bei der Shermann-Morrison-Woodbury-Formel sind u,v Vektoren.

Es sind ja zwei Aufgaben. Das erste ist wirklich nur ausmultiplizieren und nicht weiter kompliziert.

Vielleicht kann man bei der zweiten [mm] $MM^{-1}$ [/mm] ausrechnen und auch wieder mit der Darstellung der Blockmatrizen arbeiten, um sich dann auf den ersten Teil zu beziehen.

Bezug
                                
Bezug
Schur-Woodbury-Identität: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:52 So 17.06.2012
Autor: Katthi

bei dem Ausmultiplizieren muss ich aber doch die linke Seite nicht mehr ^(-1) rechnen, wenn ich die multipliziere oder? ich will doch quasi zeigen, dass dann die Identität rauskommt?!

Bezug
                                        
Bezug
Schur-Woodbury-Identität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:02 Mo 18.06.2012
Autor: Katthi

also ich habe dann doch noch eine richtige Frage zum Zeigen der Identität.
Da ich doch nur allgemeine Matrizen habe, wobei nur A und D invertierbar sind, dann weiß ich doch garnicht, wie ich meinen Ausdruck in der Klammer invetieren soll? Kann den doch garnicht irgendwie vereinfachen, weil es gilt doch nicht einfach z.B. [mm] (A+B)^{-1} = A^{-1} + B^{-1} [/mm] ?!

und wenn ich [mm] M*M^{-1} [/mm] berechne, habe ich ja nur eine Matrix, die von allen Variablen abhängt. ich müsste die doch dann irgendwie mit der identität zusammenbringen oder? Sodass ich dann sagen kann, wie E F G und H in Abhängigkeit von ADVU haben oder nicht?!

Viele Grüße
Katthi

Bezug
                                                
Bezug
Schur-Woodbury-Identität: Antwort
Status: (Antwort) fertig Status 
Datum: 18:01 Mo 18.06.2012
Autor: wieschoo


> also ich habe dann doch noch eine richtige Frage zum Zeigen
> der Identität.
>  Da ich doch nur allgemeine Matrizen habe, wobei nur A und
> D invertierbar sind, dann weiß ich doch garnicht, wie ich
> meinen Ausdruck in der Klammer invetieren soll? Kann den
> doch garnicht irgendwie vereinfachen, weil es gilt doch
> nicht einfach z.B. [mm](A+B)^{-1} = A^{-1} + B^{-1}[/mm] ?!

Das gilt doch nicht!

edit: Siehe nächsten Beitrag mit richtigen Bezeichnungen

>  
> und wenn ich [mm]M*M^{-1}[/mm] berechne, habe ich ja nur eine
> Matrix, die von allen Variablen abhängt.

Und wie sieht die in Block-Matrix-Schreibweise aus?

> ich müsste die
> doch dann irgendwie mit der identität zusammenbringen
> oder? Sodass ich dann sagen kann, wie E F G und H in
> Abhängigkeit von ADVU haben oder nicht?!
>  
> Viele Grüße
>  Katthi


Bezug
                                                        
Bezug
Schur-Woodbury-Identität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:52 Mo 18.06.2012
Autor: Katthi

hmm leider komme ich trotzdem nicht auf die Identität beim ausmultiplizieren. du hast irgendwie ne andere Formel ausmultipliziert...

ja die Matrix sieht folgendermaßen aus:
[mm] \pmat{ AE + UG & AF+UH \\ V^TE+DG & V^TF+DH} [/mm]
aber wie komme ich dann auf die Blöcke der Inversen? könnte man das ganze dann gleich der EInheitsmatrix setzen? also quasi oben rechts und unten links eine nullmatrix und links oben und rechts unten die Einheitsmatrix? kann man dadurch ein quasi Gleichungssystem aufstellen Oder ist das Blödsinn?


Bezug
                                                                
Bezug
Schur-Woodbury-Identität: Antwort
Status: (Antwort) fertig Status 
Datum: 21:01 Mo 18.06.2012
Autor: wieschoo

Ich hatte doch nur andere Bezeichnung:

[mm]\left(A+UD^{-1}V^T \right) \left( A^{-1} - A^{-1}U \left(D+V^TA^{-1}U \right)^{-1} V^TA^{-1} \right) [/mm]
[mm] \quad = I + UD^{-1}V^TA^{-1} - (U+UD^{-1}V^TA^{-1}U)(D + V^TA^{-1}U)^{-1}V^TA^{-1} [/mm]
[mm] \quad = I + UD^{-1}V^TA^{-1} - UD^{-1}(D+ V^TA^{-1}U)(D + V^TA^{-1}U)^{-1}V^TA^{-1}[/mm]
[mm] \quad = I + UD^{-1}V^TA^{-1} - UD^{-1}V^TA^{-1} = I [/mm]

Probier mal auf

[mm]\pmat{ A & U \\ V^T & D } = \pmat{ I & 0 \\ V^TA^{-1} & I } \pmat{ A & 0 \\ 0 & D-V^TA^{-1}U } \pmat{ I & A^{-1}U \\ 0 & I }[/mm]

zu kommen. Ist eigentlich analog normalen Umformen.
Betrachte
[mm]\pmat{ A & U \\ V^T & D }[/mm]

Beachte A ist invertierbar:


[mm]\pmat{ I & 0 \\ -V^TA^{-1} & I } \pmat{ A & U \\ V^T & D } = \pmat{ A & U \\ 0 & D-V^TA^{-1}U }[/mm]
...


Bezug
                                                                        
Bezug
Schur-Woodbury-Identität: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:23 Mo 18.06.2012
Autor: Katthi

hatte irgendwie ne andere formel gesehen... naja egal.. danke schonmal dafür.

aber ich verstehe nicht, was ich mit der matrix machen soll, bzw wie ich auf diese Zerlegung kommen soll. also überhaupt worauf du damit hinaus willst... =(

Bezug
                                                                                
Bezug
Schur-Woodbury-Identität: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:40 Mo 18.06.2012
Autor: wieschoo

Hi,

wenn du auf

              [mm] \pmat{ A & U \\ V^T & D } = \pmat{ I & 0 \\ V^TA^{-1} & I } \pmat{ A & 0 \\ 0 & D-V^TA^{-1}U } \pmat{ I & A^{-1}U \\ 0 & I } [/mm]

kommst, dann hast du doch schon gewonnen!
Die Matrizen rechts lassen sich alle schön invertieren. Mit

[mm]W=XYZ\Rightarrow W^{-1}=Z^{-1}Y^{-1}x^{-1}[/mm] und mit [mm]\pmat{ I & A^{-1}U \\ 0 & I }^{-1}=\pmat{ I & -A^{-1}U \\ 0 & I }[/mm] erhälst du

[mm] \pmat{ A & U \\ V^T & D }^{-1}=\begin{pmatrix} A^{-1}+A^{-1}U(D-V^TA^{-1}U)^{-1}V^TA^{-1} & -A^{-1}U(D-V^TA^{-1}U)^{-1} \\ -(D-V^TA^{-1}U)^{-1}V^TA^{-1} & (D-V^TA^{-1}U)^{-1} \end{pmatrix}[/mm]

Das ist das Ziel.

Bezug
                                                                                        
Bezug
Schur-Woodbury-Identität: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 21:54 Mo 18.06.2012
Autor: Katthi

voll gut, genau diese EInträge habe ich auch durch das LGS gelöst, dass ich nach dem multiplizieren von M mit ihrer Inversen bekommen habe. yeah...
aber jetzt direkt benutzen muss ich die Identität dafür doch nicht um EFG und H zu bestimmen? also außer, dass man dann den EIntrag für E durch die Identität vereinfachn kann... oder??

Bezug
                                                                                                
Bezug
Schur-Woodbury-Identität: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:20 Mi 20.06.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
                        
Bezug
Schur-Woodbury-Identität: Link
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:03 Mo 18.06.2012
Autor: wieschoo

beantwortet im Beitrag:
https://matheraum.de/read?i=898062

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de