www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - Schwach offene Umgebung
Schwach offene Umgebung < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schwach offene Umgebung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:23 Do 24.11.2011
Autor: hula

Hallöchen

Folgendes Problem konnte ich nicht ganz lösen:

Wenn $ A,B$ zwei konvexe abgeschlossene disjunkte Teilmengen eines reellen Banachraumes $ X $ sind, dann kann ich folgendes machen:

Ich finde für jedes $ x [mm] \in [/mm] A $ eine schwache offene Umgebung $ [mm] U_x [/mm] $ von $ 0 $, so dass $ [mm] (x+U_x) \cap [/mm] B = [mm] \emptyset [/mm] $.

Zum Beweis: Ich verwende folgendes Seperationstheorem von Banach:

Für eine abgeschlossene konvexe nichtleere Menge $ C $ eines normierten Vektorraumes und für ein $ [mm] x_0 \notin [/mm] C$ existiert ein $ f [mm] \in [/mm] X' $ im Dualraum, so dass

$ [mm] Re(f(x_0)) [/mm] > [mm] sup\{Re(f(x))|x \in C\}=:\lambda [/mm] $

In meiner Situation kann ich den Realteil weglassen (da reeller Vektorraum). Ich wende also das Theorem auf die Mengen $ C:= B $ und $ [mm] x_0:= [/mm] x $ für ein $ x [mm] \in [/mm] A $ an. Jetzt bekomm ich ich ja ein solches Element aus dem Dualraum. Ich hätte jetzt die schwach offene Umgebung wie folgt definiert:

$ [mm] U_x:= f^{-1}((-\lambda, \lambda)) [/mm] $, die ist sicher schwach offen und enthält die 0.
Nun zu meinen 2 Fragen:

1. Kann ich sagen, dass $ [mm] inf\{f(x)|x \in B\} [/mm] = [mm] -\lambda [/mm] $ ? Wenn ja, wieso genau?

Ich hätte ja gesagt, aus dem Grund: $ sup(S) = -inf(-S) $ und die Linearität von $ f $ verwendet.

2. Wenn ja, wieso gilt: $ [mm] (x+U_x)\cap [/mm] B = [mm] \emptyset [/mm]  $?

Hilfe wäre echt super!

greetz

Hula

        
Bezug
Schwach offene Umgebung: Antwort
Status: (Antwort) fertig Status 
Datum: 10:27 Mi 30.11.2011
Autor: MatthiasKr

Hallo,

> Hallöchen
>  
> Folgendes Problem konnte ich nicht ganz lösen:
>  
> Wenn [mm]A,B[/mm] zwei konvexe abgeschlossene disjunkte Teilmengen
> eines reellen Banachraumes [mm]X[/mm] sind, dann kann ich folgendes
> machen:
>  
> Ich finde für jedes [mm]x \in A[/mm] eine schwache offene Umgebung
> [mm]U_x[/mm] von [mm]0 [/mm], so dass [mm](x+U_x) \cap B = \emptyset [/mm].
>  
> Zum Beweis: Ich verwende folgendes Seperationstheorem von
> Banach:
>  
> Für eine abgeschlossene konvexe nichtleere Menge [mm]C[/mm] eines
> normierten Vektorraumes und für ein [mm]x_0 \notin C[/mm] existiert
> ein [mm]f \in X'[/mm] im Dualraum, so dass
>  
> [mm]Re(f(x_0)) > sup\{Re(f(x))|x \in C\}=:\lambda[/mm]
>  
> In meiner Situation kann ich den Realteil weglassen (da
> reeller Vektorraum). Ich wende also das Theorem auf die
> Mengen [mm]C:= B[/mm] und [mm]x_0:= x[/mm] für ein [mm]x \in A[/mm] an. Jetzt bekomm
> ich ich ja ein solches Element aus dem Dualraum. Ich hätte
> jetzt die schwach offene Umgebung wie folgt definiert:
>  
> [mm]U_x:= f^{-1}((-\lambda, \lambda)) [/mm], die ist sicher schwach
> offen und enthält die 0.
>  Nun zu meinen 2 Fragen:
>  
> 1. Kann ich sagen, dass [mm]inf\{f(x)|x \in B\} = -\lambda[/mm] ?
> Wenn ja, wieso genau?
>  
> Ich hätte ja gesagt, aus dem Grund: [mm]sup(S) = -inf(-S)[/mm] und
> die Linearität von [mm]f[/mm] verwendet.
>
> 2. Wenn ja, wieso gilt: [mm](x+U_x)\cap B = \emptyset [/mm]?
>  

Das funktioniert so nicht. Du musst doch ausnutzen, dass es einen positiven Abstand zwischen [mm] $\lambda$ [/mm] und [mm] $\mu:=f(x_0)$ [/mm] gibt, denn das ist die Essenz der Trennungseigenschaft. Setze also zum beispiel [mm] $\delta:=\frac{\mu-\lambda}{2}>0$ [/mm] und definiere dann

[mm]U_x:=f^{-1}((-\delta,\delta))[/mm]

Du solltest dann leicht zeigen können, dass

[mm]f(x_0+ x)>\lambda[/mm]  für alle [mm] x\in U_x. [/mm]

Somit kann [mm] $x=x_0+x$ [/mm] nicht in $B$ liegen und die Schnittmenge ist leer. q.e.d.

gruss
Matthias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de