www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Technik" - Schwerpunkt
Schwerpunkt < Technik < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Technik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schwerpunkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:40 Fr 26.11.2010
Autor: Lentio

Aufgabe
Welcher Winkel alpa stellt sich an der frei drehbar
aufgehängten Scheibe ein?

Gegeben: a, [mm] \beta=30 [/mm] Grad

Hallo Leute!

Hoffentlich kann mir jemand helfen. Eine Skizze  findet ihr unter diesem Link
http://www.ifm.tu-berlin.de/fileadmin/fg49/mechanikE/Aufgaben_Katalog.pdf
mit der Aufgabenbezeichnung SW 6.

So, was ich gemacht habe:

die y-Achse hab ich durch die geöffneten Schenkel gelegt (uiuiui...hier gehts heiß her ;) ), der Körper steht mit den spitzen auf der x-Achse. Müsste aussehen wie ein aufgespießtes Brathähnchen.

Schwerpunktberechnung nach [mm] x_s [/mm] = [mm] \bruch{\summe xi*Ai}{\summe Ai} [/mm]
                                                 [mm] y_s [/mm] = [mm] \bruch{\summe yi*Ai}{\summe Ai} [/mm]

mit einem mir gedachtem Rechteck (Körper I) minus DReiecksfläche (Körper II).
Berechnung der weiteren Seite der Dreiecks mit [mm] a=2xsin\bruch{60 Grad}{2}. [/mm] Nach x umgeformt ergibt: x= a. Also ein gleichseitiges Dreieck mit Höhe h [mm] \Rightarrow \bruch{a}{2}\wurzel{3} [/mm]

                [mm] y_i [/mm]    /    [mm] A_i [/mm]    /    [mm] y_i*A_i [/mm]
Körper I     a    /    [mm] 2a^3 [/mm]    /    [mm] 2a^4 [/mm]
Körper II    [mm] \bruch{\bruch{a}{2}\wurzel{3}}{3} [/mm]    /    [mm] -\bruch{a^2\wurzel{3}}{4} [/mm]    /    [mm] \bruch{-a^3}{8} [/mm]    


[mm] y_s [/mm] = [mm] \bruch{\summe yi*Ai}{\summe Ai} [/mm]
[mm] \Rightarrow \bruch{2*a^3-\bruch{a^3}{8}}{2*a^2-\bruch{a^2\wurzel{3}}{4}} =\bruch{2a-\bruch{a}{8}}{2-\bruch{\wurzel{3}}{4}}. [/mm]

Traue dem Ergebnis aber nicht.
Und wie soll das mit dem Winkel gehen? : der Körper pendelt sich doch im Schwerpunkt ein. Eine senkrechte Linie zum Gelenk gezogen, müsste also mit der rechten Körperseite einen Winkel aufspannen, der alpha gleicht?

mfg



        
Bezug
Schwerpunkt: Antwort
Status: (Antwort) fertig Status 
Datum: 21:25 Fr 26.11.2010
Autor: metalschulze

Hallo lentio,

> Welcher Winkel alpa stellt sich an der frei drehbar
>  aufgehängten Scheibe ein?
>  
> Gegeben: a, [mm]\beta=30[/mm] Grad
>  Hallo Leute!
>  
> Hoffentlich kann mir jemand helfen. Eine Skizze  findet ihr
> unter diesem Link
> http://www.ifm.tu-berlin.de/fileadmin/fg49/mechanikE/Aufgaben_Katalog.pdf
>  mit der Aufgabenbezeichnung SW 6.
>  
> So, was ich gemacht habe:
>  
> die y-Achse hab ich durch die geöffneten Schenkel gelegt
> (uiuiui...hier gehts heiß her ;) ),[lol] der Körper steht mit
> den spitzen auf der x-Achse. Müsste aussehen wie ein
> aufgespießtes Brathähnchen.
>  
> Schwerpunktberechnung nach [mm]x_s[/mm] = [mm]\bruch{\summe xi*Ai}{\summe Ai}[/mm]
>  
>                                                  [mm]y_s[/mm] =
> [mm]\bruch{\summe yi*Ai}{\summe Ai}[/mm]
>  
> mit einem mir gedachtem Rechteck (Körper I) minus
> DReiecksfläche (Körper II).
>  Berechnung der weiteren Seite der Dreiecks mit
> [mm]a=2xsin\bruch{60 Grad}{2}.[/mm] Nach x umgeformt ergibt: x= a.
> Also ein gleichseitiges Dreieck mit Höhe h [mm]\Rightarrow \bruch{a}{2}\wurzel{3}[/mm]
>  
> [mm]y_i[/mm]    /    [mm]A_i[/mm]    /    [mm]y_i*A_i[/mm]
>  Körper I     a    /    [mm]2a^3[/mm]    /    [mm]2a^4[/mm]
>  Körper II    [mm]\bruch{\bruch{a}{2}\wurzel{3}}{3}[/mm]    /    
> [mm]-\bruch{a^2\wurzel{3}}{4}[/mm]    /    [mm]\bruch{-a^3}{8}[/mm]    
>
>
> [mm]y_s[/mm] = [mm]\bruch{\summe yi*Ai}{\summe Ai}[/mm]
>  [mm]\Rightarrow \bruch{2*a^3-\bruch{a^3}{8}}{2*a^2-\bruch{a^2\wurzel{3}}{4}} =\bruch{2a-\bruch{a}{8}}{2-\bruch{\wurzel{3}}{4}}.[/mm]
>  
> Traue dem Ergebnis aber nicht.

wieso nicht? Rechnung ist doch plausibel, und nach nachrechnen im Kopf auch richtig.

> Und wie soll das mit dem Winkel gehen? : der Körper
> pendelt sich doch im Schwerpunkt ein.

Aufhängung befindet sich senkrecht über dem Schwerpunkt korrekt

> Eine senkrechte Linie
> zum Gelenk gezogen, müsste also mit der rechten
> Körperseite einen Winkel aufspannen, der alpha gleicht?

huh? Nö. [mm] \alpha [/mm] ist doch laut Aufgabe zwischen Körper und Waagerechter definiert, zwischen Senkrechter und Körper ist dann [mm] 90°-\alpha [/mm]

>  
> mfg
>  
>  

Gruß Christian

Bezug
                
Bezug
Schwerpunkt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:14 Fr 26.11.2010
Autor: Lentio

Mensch, genial einfach! Das ich darauf nicht gekommen bin.

Riesen Dank


mfg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Technik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de