www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Partielle Differentialgleichungen" - Semilineare Wellengleichung
Semilineare Wellengleichung < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Semilineare Wellengleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:44 Mi 29.12.2010
Autor: KannNichts

Hallo!

Ich muss eine Arbeit über Semilineare Wellengleichungen als Teil eines Seminars über Stochastische Partielle Differentialgleichungen.
Das Problem ist, dass ich noch nie eine Vorlesung über Partielle Differentialgleichungen oder Funktionalanalysis gehört habe.
Ich möchte mich aber in das Thema selbständig einarbeiten.

Nun habe ich folgendes vor mir:

Seien $f(s,x,t)$ und [mm] $\sigma(s,x,t)$ [/mm] Zufallsfelder die von den Paramentern [mm] $s\in\mathbf{R}$ [/mm] und [mm] $x\in [/mm] D$ abhängen. Wir betrachten
das Anfangs-Randwertproblem für eine stochastische Wellengleichung wie folgt

[mm] $\frac{\partial^{2}u}{\partial t^{2}}=(\kappa\Delta-\alpha)u+f(u,x,t)+\dot{M}(u,x,t)$ [/mm]
[mm] $x\in [/mm] D$, [mm] $t\in(0,T]$ [/mm]

[mm] $Bu$|$_{\partial D}=0$ [/mm]

$u(x,0)=g(x),$ [mm] $\frac{\partial u}{\partial t}(x,0)=h(x)$ [/mm]

wo

[mm] $\dot{M}(s,x,t)=\sigma(s,x,t)\dot{W}(x,t)$ [/mm]

Mein Problem ist, dass ich die Bestandsteile dieser PDE nicht nachvollziehen kann.
Welche Rollen spielen [mm] $(\kappa\Delta-\alpha)u$, [/mm] $f(u,x,t)$, [mm] $\dot{M}(u,x,t)$ [/mm] ? Inwiefern wird damit eine Wellengleichung charakterisiert?

Ich bin sehr dankbar für Literaturvorschläge, Links oder ähnliches Material, welches mir hilft mit dem Thema besser zurecht zu kommen.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt. Habe es aber vor und werde es hier dann aktualisieren.

Gruß
KN

        
Bezug
Semilineare Wellengleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:48 Mi 29.12.2010
Autor: MatthiasKr

Hallo KN,

naja, ich kann Dir auch keine umfangreiche Einführung in solche PDGs geben, dafür ist ja schliesslich auch das Seminar gedacht!

Ganz grob kann man die verschiedenen Terme der Gleichung so charakterisieren: der erste Summand [mm] $(\kappa\Delta-\alpha)u$ [/mm] ist der lineare Teil und auch der Teil mit den Ableitungen höchster Ordnung (räumlich) in Form des Laplace-Operators.  Der Laplace Operator in Verbindung mit dem Zeitableitungsterm macht die Gleichung zu einer Wellengleichung.

Semilinear, also insbesondere auch nichtlinear, wird die Gleichung nun durch die Terme $f$ und $M$, wo $u$ als Argument für nichtlineare Funktionen auftritt. Der Unterschied von semilinearen zu quasilinearen und voll nichtlinearen Gleichungen besteht hier darin, dass nur die Funktion $u$ selbst (und keine Ableitungen von $u$) in solch einem nichtlinearen Term vorkommt.

Was ist denn mit der Seminar-Literatur? Hilft die Dir nicht bei der Einarbeitung ins Thema?

Gruss,
Matthias

> Hallo!
>  
> Ich muss eine Arbeit über Semilineare Wellengleichungen
> als Teil eines Seminars über Stochastische Partielle
> Differentialgleichungen.
>  Das Problem ist, dass ich noch nie eine Vorlesung über
> Partielle Differentialgleichungen oder Funktionalanalysis
> gehört habe.
> Ich möchte mich aber in das Thema selbständig
> einarbeiten.
>  
> Nun habe ich folgendes vor mir:
>  
> Seien [mm]f(s,x,t)[/mm] und [mm]\sigma(s,x,t)[/mm] Zufallsfelder die von den
> Paramentern [mm]s\in\mathbf{R}[/mm] und [mm]x\in D[/mm] abhängen. Wir
> betrachten
>  das Anfangs-Randwertproblem für eine stochastische
> Wellengleichung wie folgt
>  
> [mm]\frac{\partial^{2}u}{\partial t^{2}}=(\kappa\Delta-\alpha)u+f(u,x,t)+\dot{M}(u,x,t)[/mm]
>  
> [mm]x\in D[/mm], [mm]t\in(0,T][/mm]
>  
> [mm]Bu[/mm]|[mm]_{\partial D}=0[/mm]
>  
> [mm]u(x,0)=g(x),[/mm] [mm]\frac{\partial u}{\partial t}(x,0)=h(x)[/mm]
>  
> wo
>  
> [mm]\dot{M}(s,x,t)=\sigma(s,x,t)\dot{W}(x,t)[/mm]
>  
> Mein Problem ist, dass ich die Bestandsteile dieser PDE
> nicht nachvollziehen kann.
>  Welche Rollen spielen [mm](\kappa\Delta-\alpha)u[/mm], [mm]f(u,x,t)[/mm],
> [mm]\dot{M}(u,x,t)[/mm] ? Inwiefern wird damit eine Wellengleichung
> charakterisiert?
>  
> Ich bin sehr dankbar für Literaturvorschläge, Links oder
> ähnliches Material, welches mir hilft mit dem Thema besser
> zurecht zu kommen.
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt. Habe es aber vor und werde es hier
> dann aktualisieren.
>  
> Gruß
>  KN


Bezug
                
Bezug
Semilineare Wellengleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:44 Mi 29.12.2010
Autor: KannNichts

Hallo MatthiasKr!

Vielen Dank für die Mühe die Du Dir gemacht hast und für die hilfreichen Erläuterungen.
Die Literatur für dieses Thema ist das Buch "Stochastic Partial Differential Equations" von Pao-Liu Chow. Das Problem ist, dass ich nicht viel mit dem Buch anfagen kann und ich gerne Literatur nutzen würde, die mehr für einen Einsteiger gedacht ist.
Kannst Du mir hier etwas empfehlen?

Gruß
KN

Bezug
                        
Bezug
Semilineare Wellengleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 10:01 Fr 31.12.2010
Autor: MatthiasKr

Hallo KN,

ich könnte Dir zwei Dinge empfehlen: zunächst, falls Du es nicht bereits getan hast, schau Dir doch einführende Bücher zum Thema PDG an. Die meisten behandeln auch die klassische lineare Wellengleichung. Ein gutes Verständnis der linearen Gleichung ist mit sicherheit hilfreich, wenn Du die nichtlinearen Varianten verstehen willst.

Ansonsten habe ich gesehen, dass in 'Partial Differential Equations' von Lawrence C. Evans ein Abschnitt zu diesem Thema ist. Ist glaub ich auch nicht direkt ein Buch für Anfänger, aber vielleicht nicht ganz so spezialisiert wie Dein Seminar-Buch.

Gruss
Matthias

> Hallo MatthiasKr!
>  
> Vielen Dank für die Mühe die Du Dir gemacht hast und für
> die hilfreichen Erläuterungen.
>  Die Literatur für dieses Thema ist das Buch "Stochastic
> Partial Differential Equations" von Pao-Liu Chow. Das
> Problem ist, dass ich nicht viel mit dem Buch anfagen kann
> und ich gerne Literatur nutzen würde, die mehr für einen
> Einsteiger gedacht ist.
> Kannst Du mir hier etwas empfehlen?
>  
> Gruß
>  KN


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de